Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Thursday, November 8, 2018

New gene therapy reprograms brain glial cells into neurons

I bet your doctors and stroke hospital will do nothing with this, they won't even know it exists. That is the failed state of stroke in the world. 

New gene therapy reprograms brain glial cells into neurons


A new gene therapy can turn certain brain glial cells into functioning neurons, which in turn could help repair the brain after a stroke or during neurological disorders like Alzheimer's or Parkinson's diseases.
In a series of studies in animals, a team of Penn State researchers led by Dr. Gong Chen developed a new gene therapy to reprogram —which surround each neuron and can be activated when die—and turn them into healthy, functioning neuron cells.
Chen —professor and Verne M. Willaman Chair in Life Sciences, who presented the findings Nov. 4 at the annual meeting of the Society for Neuroscience in San Diego—said that while more research is needed, he hopes the innovative technology may eventually be able to help patients with injury and .
"There is a huge unmet medical need to treat severe neurological disorders such as stroke, Alzheimer's disease and Parkinson's disease, among others," Chen said. "Neuronal loss is the common cause of these functional deficits in the brain and spinal cord. Therefore, simply targeting cell signaling pathways affected by these neurodegenerative disorders without regenerating new neurons will not be most effective to restore the lost brain functions."
In addition to neurons, the human brain is also composed of glial cells, which surround each neuron and help support healthy brain function. Chen said each of these glial cells contains neural that are silenced, or switched off, during .
By creating a new in vivo cell conversion technology, Chen said he and his team were able to inject a neural transcription factor called NeuroD1— a protein that activates neuronal genes and silences glial genes—within injured parts of the brain to infect glial cells. The NeuroD1 then binds with the glial cell's DNA and activates the neuron genes, turning the glial cell into a functioning neuron.
"This is an economic way of internal neuroregeneration without the need to transplant external cells," Chen said. "Because glial cells are abundant throughout human brains, every patient is equipped with such potential for internal neuroregeneration that has not been fully realized yet."
Chen said that in their animal studies, they were able to not only regenerate neurons with the new technique, but also restore motor and cognitive functions, as well.
"Current treatments for stroke patients, for example, have to be administered within hours, because the medication is trying to protect the neurons before they are injured and die," Chen said. "Our new technique is different in that it actually regenerates neurons after they've already died, and can be used days, weeks, or months after injury."
While the technology has only been tested in animals, Chen said he and the other researchers are hoping to eventually test the technology in a human clinical trial.
When a patient experiences an injury like a stroke, or develops a neurological disorder like Alzheimer's, neurons in parts of the brain die, creating a decline in brain function. Chen said that because adults do not have the ability to regenerate neurons on their own, developing a treatment to help patients make new neurons would benefit a large number of patients experiencing neurological disorders that are currently incurable.
In addition to developing the gene therapy, Chen and his team are also working on a drug therapy that converts human glial into neurons. The researchers have had success with the drug therapy in vitro in cell cultures, and Chen said they hope to move to animal studies in vivo and eventually to help human .
Provided by: Pennsylvania State University search and more info website

No comments:

Post a Comment