Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Tuesday, June 25, 2019

Certain cells secrete a substance in the brain that protects neurons

So putting two and two together our researchers should immediately solve this.

How much damage does this cause? 

Capillaries that don't open due to pericytes in the neuronal cascade of death

Certain cells secrete a substance in the brain that protects neurons

This image depicts capillaries in a mouse brain. Pericytes are labeled with a fluorescent red protein. Credit: A. M. Nikolakopoulou - Zlokovic Lab
USC researchers have discovered a secret sauce in the brain's vascular system that preserves the neurons needed to keep dementia and other diseases at bay.
The finding, in a mouse model of the human , focuses on specific cells called pericytes and reveals that they play a previously unknown role in brain health. Pericytes secrete a substance that keeps neurons alive, even in the presence of leaky blood vessels that foul brain matter and result in .
The study, which appears today in Nature Neuroscience, helps explain the cascade of problems that lead to neurodegeneration after stroke or , as well as in diseases like Alzheimer's and Parkinson's—and suggests a potential strategy for therapy.
"What this paper shows is if you lose these vascular cells, you start losing neurons. The link with neurodegeneration was really not that clear before," said senior author Berislav Zlokovic, director of the Zilkha Neurogenetic Institute at the Keck School of Medicine of USC.
The discovery comes at a time when scientists are beginning to understand Alzheimer's disease as the result of multiple processes that begin long before memory loss sets in. Many researchers are shifting their focus from the amyloid plaques that accumulate in the brain later in life toward other targets earlier in the timeline.
Zlokovic, for example, studies the layers of cells that make up blood vessels in the brain. His previous research shows that the more permeable, or leaky, a person's brain capillaries, the more cognitive disability they have.
For this new experiment in mice, Zlokovic zeroed in on pericytes in the brain's . Pericytes help regulate blood flow and keep blood vessel walls sealed tight. When researchers artificially removed pericytes, they saw rapid degeneration of the blood-brain barrier, a slowdown of blood flow and the loss of brain cells.
To further understand the role of pericytes, the scientists infused mice with a protein, or , secreted by pericytes in the brain and not found elsewhere in the body. They found that, even with pericyte cells artificially removed, the growth factor protected neurons and the brain cells didn't die. The results persisted even with constricted .
Because these pericytes are implicated in many diseases—including Huntington's, Parkinson's, stroke, brain trauma and —the research offers intriguing possibilities for further investigation.
"This opens up an entirely new view of the possible pathogenesis of Alzheimer's disease," Zlokovic said.

No comments:

Post a Comment