Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Tuesday, August 4, 2020

Blood biomarkers for the diagnosis and differentiation of stroke: A systematic review and meta-analysis

And just why would you want a 24 hour blood test?

Blood biomarkers for the diagnosis and differentiation of stroke: A systematic review and meta-analysis

First Published August 3, 2020 Review Article 

Correct diagnosis of stroke and its subtypes is pivotal in early stages for optimum treatment.

The aim of this systematic review and meta-analysis is to summarize the published evidence on the potential of blood biomarkers in the diagnosis and differentiation of stroke subtypes.

A literature search was conducted for papers published until 20 April 2020 in PubMed, EMBASE, Cochrane Library, TRIP, and Google Scholar databases to search for eligible studies investigating the role of blood biomarkers in diagnosing stroke. Quality assessment was done using modified Quality Assessment of Diagnostic Accuracy Studies questionnaire. Pooled standardized mean difference and 95% confidence intervals were calculated. Presence of heterogeneity among the included studies was investigated using the Cochran's Q statistic and I2 metric tests. If I2 was < 50% then a fixed-effect model was applied else a random-effect model was applied. Risk of bias was assessed using funnel plots and between-study heterogeneity was assessed using meta-regression and sensitivity analyses. Entire statistical analysis was conducted in STATA version 13.0.

A total of 40 studies including patients with 5001 ischemic strokes, 756 intracerebral hemorrhage, 554 stroke mimics, and 1774 healthy control subjects analyzing 25 biomarkers (within 24 h after symptoms onset/after the event) were included in our meta-analysis; 67.5% of studies had moderate evidence of quality. Brain natriuretic peptide, matrix metalloproteinase-9, and D-dimer significantly differentiated ischemic stroke from intracerebral hemorrhage, stroke mimics, and health control subjects (p < 0.05). Glial fibrillary acidic protein successfully differentiated ischemic stroke from intracerebral hemorrhage (standardized mean difference −1.04; 95% confidence interval −1.46 to −0.63) within 6 h. No studies were found to conduct a meta-analysis of blood biomarkers differentiating transient ischemic attack from healthy controls and stroke mimics.

This meta-analysis highlights the potential of brain natriuretic peptide, matrix metalloproteinase-9, D-dimer, and glial fibrillary acidic protein as diagnostic biomarkers for stroke within 24 h. Results of our meta-analysis might serve as a platform for conducting further targeted proteomics studies and phase-III clinical trials.

PROSPERO Registration ID: CRD42019139659.

No comments:

Post a Comment