Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Wednesday, November 26, 2025

Calorie Restriction Attenuates Transcriptional Aging Signatures in White Matter Oligodendrocytes and Immune Cells of the Monkey Brain

 Will your competent? doctor and hospital get human testing going to see if this can recover your 5 lost years of brain cognition due to your stroke

Will this recover your myelin damage from your stroke?

Or WILL THEY DO FUCKING NOTHING LIKE USUAL?

Calorie Restriction Attenuates Transcriptional Aging Signatures in White Matter Oligodendrocytes and Immune Cells of the Monkey Brain


First published: 24 November 2025
 

Funding: This work was supported by the National Institutes of Health awards 1RF1AG062831-01, 2RF1AG043640-06, NIGMS 5T32GM008541-25, 1R21DK143406-01, and the NIA Intramural Research Program, NIH.

ABSTRACT

During brain aging, terminally differentiated neuroglia exhibit metabolic dysfunction and increased oxidative damage, compromising their function. These cellular and molecular alterations impair their ability to maintain myelin sheath integrity, contributing to age-related white matter degradation. Calorie restriction (CR) is a well-established intervention that can slow biological aging and may reduce age-related metabolic alterations, thereby preserving the molecular function of aging glia. Here we present a single nucleus resolution, transcriptomics dataset evaluating the molecular profile of oligodendrocytes and microglia in the brain of aging rhesus monkeys following lifelong, 30% calorie restriction. Oligodendrocytes from CR subjects exhibited increased expression of myelin-related genes and showed enrichment in glycolytic and fatty acid biosynthetic pathways. In CR subjects, a subpopulation of oligodendrocytes upregulated cell adhesion gene, NLGN1 and were in closer proximity to axons. Microglia from CR subjects upregulated amino acid and peptide metabolism pathways and showed a reduced myelin debris signature. Our findings reveal cell-type specific transcriptional reprogramming in response to long term CR and highlight potential protective mechanisms against myelin pathology in the aging primate brain.


No comments:

Post a Comment