Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Sunday, November 23, 2025

Failure of lysosomal acidification and endomembrane network in neurodegeneration

 Your competent? doctor figured out what to do with lysosomes over a decade ago, right? Oh no, FUCKING INCOMPETENCE OCCURRED!

I take no prisoners in trying to get stroke solved; I'll step all over supposed stroke medical 'professionals' until they actually start working on 100% recovery!

  • lysosomes (5 posts to October 2012)
  • Failure of lysosomal acidification and endomembrane network in neurodegeneration


    Abstract

    Lysosomes have emerged as central hubs in the regulation of the endomembrane system, extending beyond degradation to coordinate organelle communication. Central to this regulatory role is vacuolar-type H+-ATPase (V-ATPase), a proton pump that acidifies the lysosomal lumen to enable hydrolase activity and support proteostasis. In addition to its lysosomal functions, V-ATPase influences the physiology of other organelles, including the endoplasmic reticulum (ER), Golgi apparatus and mitochondria, through both direct and indirect mechanisms involving acidification-dependent processes, such as protein folding, vesicular trafficking and stress responses. V-ATPase dysfunction compromises interorganelle communication through multiple mechanisms, including impaired calcium and lipid exchange at contact sites, disrupted organelle positioning and defective autophagic and stress signaling. In neurodegenerative diseases, such as Alzheimer’s and Parkinson’s diseases, V-ATPase impairment contributes to lysosomal storage pathology, ER stress, Golgi fragmentation and mitochondrial dysfunction. ER–endolysosome tethering proteins and mitochondria–lysosome contacts are particularly sensitive to pH and trafficking defects. These disruptions result in a cascade of organelle dysfunction and contribute to disease progression. Here, in this Review, we highlight how V-ATPase governs both local lysosomal function and broader organelle network integrity, positioning it as a critical regulator of endomembrane homeostasis and a potential therapeutic target in neurodegenerative conditions.

    No comments:

    Post a Comment