Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Saturday, July 20, 2013

Propping Open the Door to the Blood Brain Barrier

Our researchers should be jumping for joy about getting drugs past the blood brain barrier for those possibilities that can stop the neuronal cascade of death.  But is it the sonication or the gas in the microbubbles that is the cause of entry?  Can't  we even figure out cause and effect? Earlier research used xenon gas which has a proven neuroprotective effect.
I await results in 20 years unless we take over.
Propping Open the Door to the Blood Brain Barrier

The treatment of central nervous system (CNS) diseases can be particularly challenging because many of the therapeutic agents such as recombinant proteins and gene medicines are not easily transported across the blood-brain barrier (BBB). Focused ultrasound can be used to "open the door" of the blood brain barrier.

However, finding a way to "prop the door open" to allow therapeutics to reach diseased tissue without damaging normal brain tissue is the focus of a new study by a team of researchers at the Institute of Biomedical Engineering at National Taiwan University presenting at the 57th Annual Meeting of the Biophysical Society (BPS), held Feb. 2-6, 2013, in Philadelphia, Pa.
The group is investigating the feasibility of using heparin, a common anticoagulant, to enhance the delivery of therapeutic macromolecules using ultrasound into the brain. Heparin could be employed to increase treatment efficacy in patients with different types of CNS diseases under the guidance of medical imaging system providing new hope in these challenging cases. Initial results show that heparin does have the potential to optimize therapeutic delivery with ultrasound, acting as a "doorstop," allowing drugs to better permeate the BBB and enhancing treatment success.
"A higher acoustic pressure and longer sonication, and/or a higher dose of microbubbles may increase the delivery of drugs or tracers into the sonicated brain tissue," explains Kuo-Wei Lu, a member of the research team, "but side-effects, such as microhemorrhage, can also increase dramatically. The results of this study indicate that heparin may offer a safer way can to enhance the delivery of therapeutics to patients with CNS diseases."
With these encouraging results, the next step for the team is to develop a focused ultrasound system with Magnetic Resonance Imaging (MRI) guidance to establish suitable parameters needed for patient clinical trials. "Focused ultrasound sonication is a noninvasive technology capable of localized and transient BBB opening for the delivery of CNS therapeutics," Lu states. "We hope by developing suitable parameters and using chemical enhancers like heparin, this can be a valuable tool in the treatment of patients with CNS diseases, opening the door to better patient outcomes."

No comments:

Post a Comment