Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Monday, July 29, 2013

The feasibility of computer-based prism adaptation to ameliorate neglect in sub-acute stroke patients admitted to a rehabilitation center

Ask your doctor if anything here can help you.
http://www.frontiersin.org/human_neuroscience/10.3389/fnhum.2013.00353/full?utm_source=newsletter&utm_medium=email&utm_campaign=Neurology-w31-2013
Introduction: There is wide interest in transferring paper-and-pencil tests to a computer-based setting, resulting in more precise recording of performance. Here, we investigated the feasibility of computer-based testing and computer-based prism adaptation (PA) to ameliorate neglect in sub-acute stroke patients admitted to a rehabilitation center.
Methods: Thirty-three neglect patients were included. PA was performed with a pair of goggles with wide-field point-to-point prismatic lenses inducing an ipsilesional optical shift of 10°. A variety of digitalized neuropsychological tests were performed using an interactive tablet immediately before and after PA.
Results: All 33 patients [mean age 60.36 (SD 13.30)], [mean days post-stroke 63.73 (SD 37.74)] were able to work with the tablet and to understand, perform, and complete the digitalized tests within the proposed time-frame, indicating that there is feasibility of computer-based assessment in this stage post-stroke. Analyses of the efficacy of PA indicated no significant change on any of the outcome measures, except time.
Discussion: In conclusion, there is feasibility of computer-based testing in such an early stage, which makes the computer-based setting a promising technique for evaluating more ecologically valid tasks. Secondly, the computer-based PA can be considered as a reliable procedure. We can conclude from our analysis, addressing the efficacy of PA, that the effectiveness of single session PA may not be sufficient to produce short-term effects on our static tasks. Further studies, however, need to be done to evaluate the computer-based efficacy with more ecologically valid assessments in an intensive double-blind, sham-controlled multiple PA treatment design.

More at link.

No comments:

Post a Comment