Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Wednesday, July 17, 2013

Using magnets to steer stem cells

If we ever get stem cells to work in the brain this could be very important.  And why not for delivering tPA to blockage site? I bet a smaller bolus could be used with much less chance of bleeding.
The laymans writeup here;
Using magnets to steer stem cells

The abstract here: 
Magnetic Targeting of Human Mesenchymal Stem Cells with Internalized Superparamagnetic Iron Oxide Nanoparticles.

Abstract

Cell therapies offer exciting new opportunities for effectively treating many human diseases. However, delivery of therapeutic cells by intravenous injection, while convenient, relies on the relatively inefficient process of homing of cells to sites of injury. To address this limitation, a novel strategy has been developed to load cells with superparamagnetic iron oxide nanoparticles (SPIOs), and to attract them to specific sites within the body by applying an external magnetic field. The feasibility of this approach is demonstrated using human mesenchymal stem cells (hMSCs), which may have a significant potential for regenerative cell therapies due to their ease of isolation from autologous tissues, and their ability to differentiate into various lineages and modulate their paracrine activity in response to the microenvironment. The efficient loading of hMSCs with polyethylene glycol-coated SPIOs is achieved, and it is found that SPIOs are localized primarily in secondary lysosomes of hMSCs and are not toxic to the cells. Further, the key stem cell characteristics, including the immunophenotype of hMSCs and their ability to differentiate, are not altered by SPIO loading. Through both experimentation and mathematical modeling, it is shown that, under applied magnetic field gradients, SPIO-containing cells can be localized both in vitro and in vivo. The results suggest that, by loading SPIOs into hMSCs and applying appropriate magnetic field gradients, it is possible to target hMSCs to particular vascular networks.

No comments:

Post a Comment