Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Tuesday, January 21, 2014

Plasticity in the Injured Brain More than Molecules Matter

You'll have to have your doctor get this and tell you what it means for your recovery.
http://nro.sagepub.com/content/20/1/15.abstract?etoc
  1. Justine J. Overman1
  2. S. Thomas Carmichael1
  1. 1David Geffen School of Medicine at UCLA, CA, USA
  1. S. Thomas Carmichael, David Geffen School of Medicine at UCLA, 710 Westwood Pl, Los Angeles, CA 90095, USA. Email: scarmichael@mednet.ucla.edu

Abstract

Changes in brain circuits occur within specific paradigms of action in the adult brain. These paradigms include changes in behavioral activity patterns, alterations in environmental experience, and direct brain injury. Each of these paradigms can produce axonal sprouting, dendritic morphology changes, and alterations in synaptic connectivity. Activity-, experience-, and injury-dependent plasticity alter neuronal network function and behavioral output, and in the case of brain injury, may produce neurological recovery. The molecular substrate for adult neuronal plasticity overlaps in these three paradigms in key signaling pathways. These common pathways for adult plasticity suggest common mechanisms for activity-, experience-, and injury-dependent plasticity. These common pathways may also interact to enhance or impede each other during adult recovery of function after injury. This review focuses on common molecular changes evoked during the process of adult neuronal plasticity, with a focus on neural repair in stroke.

No comments:

Post a Comment