Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Tuesday, July 14, 2015

New brain atlas opens up alternative means for studying brain disorders

If your doctor isn't using this to explain how your stroke affected your brain connections and how to plan for your recovery, then you have an absolute idiot for a doctor. Run away as fast as you can. This may be a minor bit of hyperbole but it is a serious question for your doctor.
http://medicalxpress.com/news/2015-07-brain-atlas-alternative-disorders.html?hootPostID=e58156db1cd975fffeabc6b985c61dd3
A new study, led by Jesús M. Cortés, an Ikerbasque lecturer at the Biocruces Institute for Healthcare Research and an academic collaborator in the Department of Cell Biology and Histology of the UPV/EHU-University of the Basque Country, has shed some light on the brain's organization and functions.

The is a highly complex, dynamic system. It is made up of grey and . The grey matter contains the neurons which are responsible for processing the information received from the sensory area and other . The white matter makes use of fibres and is responsible for connecting the various regions of of the brain so that they can communicate with each other efficiently and collaborate in complex, (this map of fibres is like the brain's highways). The functional interaction between the various regions of the brain is essential for it to function properly: it is reckoned that 20% of the energy consumed by a person is used by the brain to establish and maintain these connections.
Many studies have been carried out until now to understand how the brain functions and how it is organised structurally, but we still have much more to learn.
A new study, led by Jesús M. Cortés, an Ikerbasque lecturer at the Biocruces Institute for Healthcare Research and an academic collaborator in the Department of Cell Biology and Histology of the UPV/EHU-University of the Basque Country, has shed some light on this problem. The work has been published in the prestigious journal Scientific Reports and its lead author is Ibai Díez, a telecommunications engineer also attached to Biocruces. In actual fact, the study combines techniques at the cutting edge of three disciplines: neuroscience, image processing and network theory. In particular, the brain's structural (fibres) and functional data (the brain's functional activity) have been merged on a large scale to analyse how the brain is organised. This analysis has resulted in the "partitioning" of the brain into an atlas that follows a common functional and structural pattern. This is the first time that a brain atlas has been produced by combining structural and functional data; until now, the atlases used were purely structural ones (anatomical ones) or purely functional ones.
Thanks to this new partition of the brain, the heavy dependence that exists between structural connectivity and the functional connectivity networks has been revealed for the first time. The atlas is robust and consistent across different individuals (it has been validated using data from other subjects and in different magnetic resonance imaging equipment).
Many neurological disorders affect the central nervous system. A considerable number are of a structural origin, such as head injuries or neurodegenerative diseases such as Alzhiemer's or Parkinson's (which originate as a result of a significant loss of fibres). Others may have a functional origin, such as a simple headache, a migraine or even an epileptic fit. Structural damage is known to lead to a functional alteration (the loss of fibres in Alzheimer's causes memory loss, etc.) or the other way round (there are people who display neuronal loss in specific zones after numerous epileptic fits). So the structure-function relationship is closely related as alterations in one of them affect the other.
The new atlas has been produced using data from healthy subjects Right now, alterations in each of these regions caused by aging or a moderate to severe head injury are being studied. So the study of the alterations in the different regions of the atlas may henceforth open up alternative avenues for understanding a range of disorders.
More information: I. Diez, P. Bonifazi, I. Escudero, B. Mateos, M.A. Munoz, S. Stramaglia and J.M. Cortes A novel brain partition highlights the modular skeleton shared by structure and function Scientific Reports (2015). DOI: 10.1038/srep10532

No comments:

Post a Comment