Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Wednesday, December 23, 2015

The feasibility of a brain-computer interface functional electrical stimulation system for the restoration of overground walking after paraplegia

Don't worry,this will not have a followup stroke study because we have NO stroke strategy or stroke leadership.
http://jneuroengrehab.biomedcentral.com/articles/10.1186/s12984-015-0068-7 
  • Christine E. King,
  • Po T. Wang,
  • Colin M. McCrimmon,
  • Cathy CY Chou,
  • An H. DoEmail author and
  • Zoran NenadicEmail author
Journal of NeuroEngineering and Rehabilitation201512:80
DOI: 10.1186/s12984-015-0068-7
Received: 4 March 2015
Accepted: 19 August 2015
Published: 24 September 2015

Abstract

Background

Direct brain control of overground walking in those with paraplegia due to spinal cord injury (SCI) has not been achieved. Invasive brain-computer interfaces (BCIs) may provide a permanent solution to this problem by directly linking the brain to lower extremity prostheses. To justify the pursuit of such invasive systems, the feasibility of BCI controlled overground walking should first be established in a noninvasive manner. To accomplish this goal, we developed an electroencephalogram (EEG)-based BCI to control a functional electrical stimulation (FES) system for overground walking and assessed its performance in an individual with paraplegia due to SCI.

Methods

An individual with SCI (T6 AIS B) was recruited for the study and was trained to operate an EEG-based BCI system using an attempted walking/idling control strategy. He also underwent muscle reconditioning to facilitate standing and overground walking with a commercial FES system. Subsequently, the BCI and FES systems were integrated and the participant engaged in several real-time walking tests using the BCI-FES system. This was done in both a suspended, off-the-ground condition, and an overground walking condition. BCI states, gyroscope, laser distance meter, and video recording data were used to assess the BCI performance.

Results

During the course of 19 weeks, the participant performed 30 real-time, BCI-FES controlled overground walking tests, and demonstrated the ability to purposefully operate the BCI-FES system by following verbal cues. Based on the comparison between the ground truth and decoded BCI states, he achieved information transfer rates >3 bit/s and correlations >0.9. No adverse events directly related to the study were observed.

Conclusion

This proof-of-concept study demonstrates for the first time that restoring brain-controlled overground walking after paraplegia due to SCI is feasible. Further studies are warranted to establish the generalizability of these results in a population of individuals with paraplegia due to SCI. If this noninvasive system is successfully tested in population studies, the pursuit of permanent, invasive BCI walking prostheses may be justified. In addition, a simplified version of the current system may be explored as a noninvasive neurorehabilitative therapy in those with incomplete motor SCI.

Introduction

Mobility after paraplegia due to spinal cord injury (SCI) is primarily achieved by substituting the lost function with a wheelchair [1]. However, the sedentary lifestyle associated with excessive wheelchair reliance can lead to medical co-morbidities, such as osteoporosis, heart disease, respiratory illnesses, and pressure ulcers [2]. These conditions contribute to the bulk of SCI-related medical care cost [2]. Therefore, restoration of walking after SCI remains a clinical need of high priority.
Current approaches to restoring ambulation after SCI include the use of robotic exoskeletons [3, 4] and functional electrical stimulation (FES) systems [5, 6]. These devices, however, lack intuitive able-body-like supraspinal control, as they typically rely on manually controlled switches. In addition, these systems cannot exploit the neuroplasticity of residual or spared pathways between the brain and spinal motor pools [7]. Hence, novel means of restoring intuitive, brain-controlled ambulation after SCI are needed. If successful, such novel approaches may drastically reduce SCI-related medical costs and improve quality of life after paraplegia due to SCI.
Spinal cord stimulation has recently emerged as a promising method to restore voluntary lower extremity movements to those with SCI [8, 9]. Brain-computer interfaces (BCIs), which enable intuitive and direct brain control of walking via an external device [10, 11], can be seen as an alternative approach. Surveys indicate that those with paraplegia due to SCI highly prioritize restoration of walking as a way of improving their quality of life [12, 13]. In addition, approximately 60 % of survey participants expressed willingness to undergo implantation of an invasive BCI device to restore ambulation [13]. However, before such a system can be pursued, it is necessary to establish the feasibility of brain-controlled overground ambulation. In this proof-of-concept study, we report on a noninvasive BCI-controlled FES system capable of restoring a basic form of overground walking to an individual with paraplegia due to SCI. The study advances our existing BCI systems from applications such as walking in a virtual reality environment (VRE) [1416] and walking with a treadmill-suspended robotic orthosis [10] to overground walking [11]. If successfully tested in a population of individuals with SCI, the proposed BCI-FES system may lead to the development of a fully implantable BCI system for restoring ambulation after SCI.

More at link.

No comments:

Post a Comment