Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Thursday, January 21, 2016

Robotics exoskeleton for shoulder rehabilitation

Good luck trying to get this into your stroke department.
http://www.alphagalileo.org/ViewItem.aspx?ItemId=160069&CultureCode=en
A team from the Centre for Automation and Robotics (CAR, UPM-CSIC) has developed a robotic exoskeleton that performs more efficiently rehabilitation therapies of patients with shoulder injuries. By using strength and motion sensors, the system assesses the degree of an injury and its evolution as the treatment progresses.
Besides, the use of this system is simple and easily adaptable to any patient. These features represent not only a great advantage for patients, who recover faster, but also a big help for healthcare providers that treat these injuries every day.
Human shoulder is one of the most complex joints in the human body due to its wide variety of motions. The interrelationship among its parts makes rehabilitation complex after an injury if compared to other skeletal-muscle injuries.
Rehabilitation therapies performed by intelligent robotic systems have been shown to reduce patients' recovery time. However, there are very few robotic systems for recovery of shoulder injuries. In this context, researchers from CAR have developed a robotic exoskeleton that, apart from lessening the recovery time of an injury, assesses and registers the progress of the entire rehabilitation process.
According to the main researcher, Cecilia García Cena, simulating the skeletal system is not enough to develop this exoskeleton, it is needed to incorporate both the kinematics and dynamics of a complete model that takes into account the skeletal system, muscles, tendons and ligaments. All these elements are included in the new intelligent robotic system.
The exoskeleton developed by researchers is inexpensive, easy to use and adaptable to any patient. This system can help to relieve saturated rehabilitation units, with the consequent saving in the healthcare system.
http://www.upm.es/internacional/UPM/UPM_Channel/News/c8767d6ee2e52510VgnVCM10000009c7648aRCRD

No comments:

Post a Comment