Deans' stroke musings

Changing stroke rehab and research worldwide now.Time is Brain!Just think of all the trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 493 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It's quite disgusting that this information is not available from every stroke association and doctors group.
My back ground story is here:http://oc1dean.blogspot.com/2010/11/my-background-story_8.html

Tuesday, July 25, 2017

Early Reperfusion After Brain Ischemia Has Beneficial Effects Beyond Rescuing Neurons

What is the followup needing to be done to translate this to humans? Next steps?
http://stroke.ahajournals.org/content/48/8/2222?etoc=
Masaki Tachibana, Tetsuro Ago, Yoshinobu Wakisaka, Junya Kuroda, Masahiro Shijo, Yoji Yoshikawa, Motohiro Komori, Ataru Nishimura, Noriko Makihara, Kuniyuki Nakamura, Takanari Kitazono
This article requires a subscription to view the full text. If you have a subscription you may use the login form below to view the article. Access to this article can also be purchased.


Abstract

Background and Purpose—Recent studies show that successful endovascular thrombectomy 6 to 12 hours after stroke onset enhances functional outcomes 3 months later. In this study, we investigated the effects of reperfusion after ischemia on repair processes in the ischemic areas, as well as on functional recovery, using mouse stroke models.
Methods—We examined time-dependent histological changes and functional recovery after transient middle cerebral artery occlusion of different durations, including permanent middle cerebral artery occlusion, using the CB-17 (CB-17/lcr-+/+Jcl) mouse strain, which has poor pial collateral blood flow.
Results—Large microtubule-associated protein 2-negative areas of neuronal death were produced in mice subjected to ≥60 minutes of ischemia followed by reperfusion on day 1, while restricted microtubule-associated protein 2-negative regions were observed in mice subjected to a 45-minute period of ischemia. A substantial reduction in microtubule-associated protein 2-negative areas was observed on day 7 in mice given early reperfusion and was associated with better functional recovery. Klüver–Barrera staining demonstrated that white matter injury on day 1 was significantly lesser in mice with reperfusion. Immunohistochemistry and electron microscopy revealed that a greater number of endothelial cells were present in the infarct areas in mice with earlier reperfusion and were associated with a more rapid recruitment of platelet-derived growth factor receptor β-positive pericytes and subsequent intrainfarct fibrosis. Early reperfusion also resulted in a greater accumulation of glial fibrillary acidic protein–positive astrocytes in peri-infarct areas. Peri-infarct astrogliosis was attenuated in platelet-derived growth factor receptor β heterozygous knockout mice.
Conclusions—Early reperfusion after ischemia enhances the survival of endothelial cells and pericytes within ischemic areas even after the infarct is established, resulting in efficient intrainfarct fibrosis and peri-infarct astrogliosis. These effects might be associated with efficient peri-infarct reorganization and functional recovery.

No comments:

Post a Comment