Deans' stroke musings

Changing stroke rehab and research worldwide now.Time is Brain!Just think of all the trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 493 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It's quite disgusting that this information is not available from every stroke association and doctors group.
My back ground story is here:http://oc1dean.blogspot.com/2010/11/my-background-story_8.html

Sunday, July 30, 2017

A molecule for proper neural wiring in the cerebellum

Proper neural wiring sounds incredibly important to stroke recovery. But only to survivors, I bet absolutely nothing will be done with this. Our fucking failures of stroke associations won't lift a finger, neither will your doctor or stroke hospital. 
http://www.alphagalileo.org/ViewItem.aspx?ItemId=177722&CultureCode=en
A molecule produced by insulating glial cells facilitates the functional wiring of brain cells involved in motor coordination.
Researchers at Hokkaido University have found that the molecule “L-gutamate/L-aspartate transporter” (GLAST) plays an essential role in establishing and maintaining proper neural wiring of Purkinje cells in the cerebellum.
Purkinje cells are among the largest nerve cells in the brain. They are present in the cerebellum, a small structure in the back of the brain influencing motor coordination. They are mainly hooked up to the nervous system by means of two distinct types of nerve fibers, “parallel fibers” and “climbing fibers.” Those fibers connect to different part of Purkinje cell dendrites, or the branches projecting from the cell body, segregating their territories.
GLAST is a molecule produced by specialized insulating cells, called Bergmann glia, that wrap around Purkinje cell synapses (a synapse is the structure connecting one nerve cell to another). GLAST’s role is to remove excess glutamate, a neurotransmitter used by parallel and climbing fibers to send signals to Purkinje cells. This facilitates a “high-fidelity” signal, by allowing the right amount of glutamate to reach the targeted nerve cell without spilling over onto its neighbors. However, little is known about GLAST’s role in the development of neural circuits.
Professor Masahiko Watanabe of Hokkaido University and his colleagues in Japan compared the wiring of Purkinje cells in normal mice and mutant mice lacking GLAST. The wiring of Purkinje cells in the mutant mice was laden with abnormalities.
Each Purkinje cell is normally innervated by a single climbing fiber as a result of competition between the fibers during development. However, in the mutant mice, Purkinje cells were innervated by multiple climbing fibers, which apparently caused the Purkinje cells to be atypically excited.
Parallel fibers were also affected. They robustly increased the number of connections with Purkinje cells, impairing the territorial segregation between climbing fibers and parallel fibers. Furthermore, in the knockout mice, Bergmann glial cells were improperly wrapped around the Purkinje cells, exposing them to the external environment.
In a different experiment, they also found that functional blockade of GLAST in normal adult mice results in similar abnormalities as seen in the knockout mice.
“We have shown that the glutamate transporter, GLAST, plays important roles in establishing and maintaining proper nerve wiring and insulation in the cerebellum. Further investigation should reveal how GLAST’s function is related to the plasticity of the neural network,” says Masahiko Watanabe.
https://www.global.hokudai.ac.jp/blog/a-molecule-for-proper-neural-wiring-in-the-cerebellum/

Attached files

  • In the normal mice (left panel), connections between Purkinje cells (asterisks) and climbing fibers or parallel fibers are thoroughly wrapped by Bergmann glia (colored in red), whereas they are exposed to their neighbors in the knockout mice lacking GLAST (right panel, arrowheads).

2 comments:

  1. regarding the Parkinsonian drug used to treat stroke victims, they used this in that movie Cocoon, that starred Robin Williams, and nothing permanent ever came out of it.
    I actually found this: I would like your comment on it

    ReplyDelete
    Replies
    1. This post discusses it. http://oc1dean.blogspot.com/2017/07/vegetative-stroke-patient-36-was-able.html

      Delete