Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Thursday, September 7, 2017

Ginsenoside Rg1 nanoparticle penetrating the blood–brain barrier to improve the cerebral function of diabetic rats complicated with cerebral infarction

Sounds useful if we could have a discussion with stroke experts on how to use this for stroke recovery.
https://www.dovepress.com/articles.php?article_id=34581
Authors Shen J, Zhao Z, Shang W, Liu C, Zhang B, Zhao L, Cai H
Received 13 April 2017
Accepted for publication 2 August 2017
Published 5 September 2017 Volume 2017:12 Pages 6477—6486
DOI https://doi.org/10.2147/IJN.S139602
Checked for plagiarism Yes
Review by Single-blind
Peer reviewers approved by Dr Farooq Shiekh
Peer reviewer comments 2
Editor who approved publication: Professor Dongwoo Khang
Junyi Shen, Zhiming Zhao, Wei Shang, Chunli Liu, Beibei Zhang, Lingjie Zhao, Hui Cai

Department of Integrated Traditional and Western Medicine, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China

Abstract: Diabetic cerebral infarction is with poorer prognosis and high rates of mortality. Ginsenoside Rg1 (Rg1) has a wide variety of therapeutic values for central nervous system (CNS) diseases for the neuron protective effects. However, the blood–brain barrier (BBB) restricts Rg1 in reaching the CNS. In this study, we investigated the therapeutic effects of Rg1 nanoparticle (PHRO, fabricated with γ-PGA, L-PAE (H), Rg1, and OX26 antibody), targeting transferrin receptor, on the diabetes rats complicated with diabetic cerebral infarction in vitro and in vivo. Dynamic light scattering analysis shows the average particle size of PHRO was 79±18 nm and the polydispersity index =0.18. The transmission electron microscope images showed that all NPs were spherical in shape with diameters of 89±23 nm. PHRO released Rg1 with sustained release manner and could promote the migration of cerebrovascular endothelial cells and tube formation and even penetrated the BBB in vitro. PHRO could penetrate the BBB with high concentration in brain tissue to reduce the cerebral infarction volume and promote neuronal recovery in vivo. PHRO was promising to be a clinical treatment of diabetes mellitus with cerebral infarction.

No comments:

Post a Comment