Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Sunday, February 14, 2021

Computer can determine whether you'll die from COVID

 I guess you'll have to have your doctor get this. I could find nothing that explained the BMI levels or whether the hypertension was treated or untreated.

Computer can determine whether you'll die from COVID

Using patient data, artificial intelligence can make a 90 percent accurate assessment of whether a person will die from COVID-19 or not.

University of Copenhagen - Faculty of Science

Research News

Using patient data, artificial intelligence can make a 90 percent accurate assessment of whether a person will die from COVID-19 or not, according to new research at the University of Copenhagen. Body mass index (BMI), gender and high blood pressure are among the most heavily weighted factors. The research can be used to predict the number of patients in hospitals, who will need a respirator and determine who ought to be first in line for a vaccination.

Artificial intelligence is able to predict who is most likely to die from the coronavirus. In doing so, it can also help decide who should be at the front of the line for the precious vaccines now being administered across Denmark.

The result is from a newly published study by researchers at the University of Copenhagen's Department of Computer Science. Since the COVID pandemic's first wave, researchers have been working to develop computer models that can predict, based on disease history and health data, how badly people will be affected by COVID-19.

Based on patient data from the Capital Region of Denmark and Region Zealand, the results of the study demonstrate that artificial intelligence can, with up to 90 percent certainty, determine whether an uninfected person who is not yet infected will die of COVID-19 or not if they are unfortunate enough to become infected. Once admitted to the hospital with COVID-19, the computer can predict with 80 percent accuracy whether the person will need a respirator.

"We began working on the models to assist hospitals, as during the first wave, they feared that they did not have enough respirators for intensive care patients. Our new findings could also be used to carefully identify who needs a vaccine," explains Professor Mads Nielsen of the University of Copenhagen's Department of Computer Science.

Older men with high blood pressure are highest at risk

The researchers fed a computer program with health data from 3,944 Danish COVID-19 patients. This trained the computer to recognize patterns and correlations in both patients' prior illnesses and in their bouts against COVID-19.

"Our results demonstrate, unsurprisingly, that age and BMI are the most decisive parameters for how severely a person will be affected by COVID-19. But the likelihood of dying or ending up on a respirator is also heightened if you are male, have high blood pressure or a neurological disease(Does this mean stroke or TBI?)," explains Mads Nielsen.

The diseases and health factors that, according to the study, have the most influence on whether a patient ends up on a respirator after being infected with COVID-19 are in order of priority: BMI, age, high blood pressure, being male, neurological diseases, COPD, asthma, diabetes and heart disease.

"For those affected by one or more of these parameters, we have found that it may make sense to move them up in the vaccine queue, to avoid any risk of them becoming inflected and eventually ending up on a respirator," says Nielsen.

Predicting respiratory needs is a must

Researchers are currently working with the Capital Region of Denmark to take advantage of this fresh batch of results in practice. They hope that artificial intelligence will soon be able to help the country's hospitals by continuously predicting the need for respirators.

"We are working towards a goal that we should be able to predict the need for respirators five days ahead by giving the computer access to health data on all COVID positives in the region," says Mads Nielsen, adding:

"The computer will never be able to replace a doctor's assessment, but it can help doctors and hospitals see many COVID-19 infected patients at once and set ongoing priorities."

However, technical work is still pending to make health data from the region available for the computer and thereafter to calculate the risk to the infected patients. The research was carried out in collaboration with Rigshospitalet and Bispebjerg and Frederiksberg Hospital.

###

Facts:

  • Data is processed on Computerome, a secure supercomputer for personal data, and under the permission of the Danish Patient Safety Authority, data owners and other relevant authorities.
  • Artificial intelligence predicts with 90 percent accuracy whether an infected patient will die of COVID-19.
  • Once a person is hospitalized with COVID-19, artificial intelligence can predict whether the person should be on a respirator with 80 percent accuracy.
  • BMI, age, high blood pressure, being male, neurological diseases, COPD, asthma, diabetes and heart disease are factors that artificial intelligence weigh`s most to with the risk of getting into the respirator.
  • The computer models are based on health data from 3,944 COVID-19 patients from the Capital Region and Region Zealand.
  • The article is published in the scientific journal Scientific Reports.
  • The study is supported by the Novo Nordisk Foundation and the Innovation Fund.

    Contact

    Mads Nielsen
    Professor
    Department of Computer Science
    University of Copenhagen
    Mobile: + 45 24 600 599
    madsn@di.ku.dk

    Michael Skov Jensen
    Journalist
    The Faculty of Science
    University of Copenhagen
    Mobile: + 45 93 56 58 97
    msj@science.ku.dk

  • No comments:

    Post a Comment