Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Monday, April 21, 2025

Artemisinin alleviates ischemic stroke injury and promotes neurogenesis through PPARγ-mediated M2 polarization of microglia

 Didn't your competent? stroke medical 'professionals' figure something useful with this years ago?

Do you prefer your doctor and hospital incompetence NOT KNOWING? OR NOT DOING?

Artemisinin alleviates ischemic stroke injury and promotes neurogenesis through PPARγ-mediated M2 polarization of microglia

https://doi.org/10.1016/j.phymed.2025.156769
Get rights and content
Under a Creative Commons license
Open access

Abstract

Background

Ischemic stroke (IS) remains a challenge in clinical treatment due to limited therapeutic options. While artemisinin (ART), an antimalarial drug, shields against acute IS via anti-inflammatory, antioxidant, and anti-apoptotic properties, the long-term benefits and specific underlying mechanisms have not been fully elucidated. Here, we investigate whether ART ameliorates IS injury and promotes neurogenesis by activating the peroxisome proliferator-activated receptor γ (PPARγ)-dependent M2 microglial polarization.

Methods

The experimental models included transient middle cerebral artery occlusion/reperfusion (MCAO/R) in rats and oxygen-glucose deprivation/reoxygenation (OGD/R) in primary microglial cultures to simulate IS. The therapeutic effects of ART were evaluated by neurological functions and infarct volume. PPARγ inhibitor T0070907 (T007) intraperitoneally injected 24 h following MCAO/R at a dose of 2 mg/kg in vivo and a concentration of 10 μM for 30 min before OGD in vitro. We utilized real-time quantitative polymerase chain reaction (RT-qPCR) along with Western blot analyses to detect the microglia markers and PPARγ. The proliferation and differentiation of neural stem cells (NSCs) both in vivo and in vitro were assessed via immunofluorescence labeling. Neurogenic potential of ART-treated microglia was investigated by conditioned medium. The levels of brain-derived growth factor (BDNF) and insulin-like growth factor-1 (IGF-1) in microglia were measured by immunofluorescence staining and enzyme-linked immunosorbent assay (ELISA).

Results

ART treatment significantly alleviated short- and long-term neurological deficits and reduced cerebral infarct volume in rats with IS. Experiments conducted both in vivo and in vitro experiments illustrated that ART directed microglia away from the pro-inflammatory M1 state towards the anti-inflammatory M2 state, enhanced neurogenesis, and upregulated the expression of PPARγ, BDNF, and IGF-1. In addition, the conditioned medium from ART-exposed microglia stimulated the proliferation and neuronal differentiation of primary NSCs. However, these positive effects were effectively counteracted by the use of PPARγ inhibitor T0070907 (T007).

Conclusion

Our findings demonstrate that ART ameliorates IS injury and promotes neurogenesis mainly through PPARγ-mediated microglia M2 polarization. Therefore, ART can be considered a potential therapeutic drug for IS.

No comments:

Post a Comment