Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Thursday, March 3, 2011

Lobster shells may offer paralysis cure, study finds

This one is taking a leap to possibly transfer this into acute stroke rehab, but if someone doesn't think outside the bun we'll never get anywhere.
http://www.themedguru.com/20100419/newsfeature/lobsters-may-offer-paralysis-cure-study-finds-86134225.html

In what could lead to a new discovery of nerve cell regeneration for people paralyzed by spinal cord injuries, researchers claim the shells of sea creatures may repair damaged nerve membranes and restore the spinal cord's ability to transmit signals to the brain.
After spinal cord injuries, many people become paralyzed because their brains are cut off from central pattern generators, which are networks of neurons in the spinal cord that are thought to produce an automatic walking motion.
Richard Borgens and his team comprising of physiologist Riyi Shi and chemist Youngnam Cho from the Center for Paralysis Research at the Purdue School of Veterinary Medicine have discovered that the simple sugar found in the crustacean shells of lobsters is capable of targeting damaged membranes.
Professor Richard Borgens stated, “This is the most exciting development for spinal cord and brain injury since Second World War.
“I am very excited. Using chemicals to repair the damaged nervous system is a completely new way to treat people with these terrible injuries. It’s amazing one of these special chemicals would turn out to be a sugar.”
Experiment on guinea pigs
Researchers started experimenting on guinea pigs. They first isolated and compressed a segment of the rodent’s spinal cord. Subsequently, they applied the chemical and a fluorescent dye that could only enter the cells through damaged membranes.
Scrutinizing the tissues under the microscope, the investigators noted that all the neurons in the spinal cord tissue remained unstained by the dye. Moreover, while measuring the guinea pigs’ brain response, they observed that the signals failed to reach the brain because of the damaged spinal cord.
Thirty minutes after injecting the sugar mixed with sterile water into the bloodstream of the animals the researchers found that the damaged cells had been repaired.
The experts stated, “However, 30•min after injecting chitosan into the rodents, the signals miraculously returned to the animals’ brains.”
Researchers theorize that the injected sugar migrates to the spinal cord injury where it plugs holes in the coating of the nerve cells.
Borgens added, “Science has moved in a new direction. Previously we have been looking at drugs which would potentially reduce damage. Now we are looking at complete repair.”
Implications of the study
The researchers are optimistic that the treatment, which showed promise in guinea pigs, will also work equally well in human trials.
Borgens stated, “The spinal cord of a guinea pig is very similar to that of a human – it is just smaller.
“This is not like a drug which may work in some species and not in others. This is a mechanical effect. The sugar molecules migrate to the nerve injury target and repair the injured area, not the undamaged area.”

The discovery has been published in The Journal of Experimental Biology.

No comments:

Post a Comment