Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Saturday, March 19, 2011

microscope captures 3D movies of living cells

I wonder how many would be willing to volunteer to open a flap to their brain to allow researchers to prove their therapies work on a cellular level vs. using micro-optics

http://www.gizmag.com/3d-microscope-movies-living-cells/18138/
In some cases, looking at a living cell under a microscope can cause it damage or worse, can kill it. Now, a new kind of microscope has been invented by researchers from the Howard Hughes Medical Institute that is able to non-invasively take a three dimensional look inside living cells with stunning results. The device uses a thin sheet of light like that used to scan supermarket bar codes and could help biologists to achieve their goal of understanding the rules that govern molecular processes within a cell.
    View all
Veteran microscope innovator Eric Betzig says that the field of microscopy has been hindered by the fact that many techniques require cells to be killed and fixed before being viewed. Light produced by microscopes used for live-cell techniques can, in some cases, actually cause damage to the cells. The light also floods the whole area being examined, not just the small portion that's in focus – producing blur from the out-of-focus regions.
Two years after arriving at HHMI's Janelia Farm Research Campus, Betzig started working ways to overcome these problems.
"The question was, is there a way of minimizing the amount of damage you're doing so that you can then study cells in a physiological manner while also studying them at high spatial and temporal resolution for a long time?" said Betzig.


First developed around a 100 years ago, plane illumination microscopy involves shining light through the side of a sample rather than from the top. While offering some promise, Betzig's group found that the technique still exposed too much of the sample. A much thinner sheet of light was produced using by sweeping a Bessel beam – a kind of non-diffracting light beam – across the sample but the light produced by this form of plane illumination microscopy proved to be somewhat weak, making the pattern of illumination look somewhat like a bullseye.
Working with postdoctoral researchers Thomas Planchon and Liang Gao, Betzig has spent the last couple of years refining the process to try and overcome the problem. First, instead of sweeping the Bessel beam across the sample, the group rapidly switched it off and on – a method known as structured illumination. Then by concentrating the light to a narrow central part of the Bessel beam using something called two-photon microscopy, they were able to build 3D stacks of the sample at nearly 200 images per second to generate movies of processes like cell division in stunning detail.
Betzig says that Bessel beam plane illumination microscopy will prove a powerful tool for cell biologists, since it non-invasively images the rapidly evolving three-dimensional complexity of cells.
The research is described in detail in a paper entitled Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination, which was recently published in the journal Nature Methods.

I can't help myself, I have to suggest options for researchers even though they might be smarter than me, although I doubt it.

No comments:

Post a Comment