Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Monday, December 5, 2011

Continuous Measurement of Cerebral Cortical Blood Flow by Laser-Doppler Flowmetry in a Rat Stroke Model

The first thing I thought about when reading this was that this would be the perfect tool to determine if the suggested drugs for opening pericyte constriction of capillaries actually work.
http://www.nature.com/jcbfm/journal/v9/n5/abs/jcbfm198984a.html

Abstract

Summary: Laser-Doppler flowmetry (LDF), a new method allowing instantaneous, continuous, and noninvasive measurements of microcirculatory blood flow in a small tissue sample, was evaluated for its accuracy in monitoring regional cerebral blood flow (rCBF) in the cortical microcirculation after focal cerebral ischemia. Wistar and spontaneously hypertensive rats (SHR, n = 19) were subjected to permanent occlusion of the middle cerebral and common carotid arteries. Absolute rCBF in a tissue sample of the ischemic hemisphere was measured autoradiographically with [14C]iodoantipyrine as a tracer and compared to rCBF measured by LDF. Additionally, the percent change in rCBF between baseline and ischemic values was compared for both methods. Absolute rCBF values recorded with LDF correlated poorly (r = 0.54) with [14C]iodoantipyrine measurements. In contrast, LDF readings expressed as a percentage of ischemic vs. preocclusion readings (relative LDF readings) correlated very well (r = 0.91) with the percent change in [14C]iodoantipyrine measurements. We conclude that LDF does not provide accurate measurements of absolute rCBF values but this method allows accurate measurements of changes in rCBF due to induction of focal cerebral ischemia

No comments:

Post a Comment