Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Friday, January 18, 2013

Functional and Histological Outcome after Focal Traumatic Brain Injury Is Not Improved in Conditional EphA4 Knockout Mice

I would expect axon guidance to be something our doctors need to completely understand and tell us how to accomplish. Your doctor doesn't know the answer? Fire them!!!
http://uu.diva-portal.org/smash/record.jsf?pid=diva2:585197
We investigated the role of the axon guidance molecule EphA4 following traumatic brain injury (TBI) in mice. Neutralization of EphA4 improved motor function and axonal regeneration following experimental spinal cord injury (SCI). We hypothesized that genetic absence of EphA4 could improve functional and histological outcome following TBI. Using qRT-PCR in wild-type (WT) mice, we evaluated the EphA4 mRNA levels following controlled cortical impact (CCI) TBI or sham injury and found it to be downregulated in the hippocampus (p < 0.05) but not the cortex ipsilateral to the injury at 24 h post-injury. Next, we evaluated the behavioral and histological outcome following CCI using WT mice and Emx1-Cre-driven conditional knockout (cKO) mice. In cKO mice, EphA4 was completely absent in the hippocampus and markedly reduced in the cortical regions from embryonic day 16, which was confirmed using Western blot analysis. EphA4 cKO mice had similar learning and memory abilities at 3 weeks post-TBI compared to WT controls, although brain-injured animals performed worse than sham-injured controls (p < 0.05). EphA4 cKO mice performed similarly to WT mice in the rotarod and cylinder tests of motor function up to 29 days post-injury. TBI increased cortical and hippocampal astrocytosis (GFAP immunohistochemistry, p < 0.05) and hippocampal sprouting (Timm stain, p < 0.05) and induced a marked loss of hemispheric tissue (p < 0.05). EphA4 cKO did not alter the histological outcome. Although our results may argue against a beneficial role for EphA4 in the recovery process following TBI, further studies including post-injury pharmacological neutralization of EphA4 are needed to define the role for EphA4 following TBI.

No comments:

Post a Comment