Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Wednesday, August 14, 2013

Whole-brain cerebral blood flow mapping using 3D echo planar imaging and pulsed arterial tagging

And what is your doctor doing with this to identify damage in penumbra areas that can be saved? What saving neuron solutions are being used? You mean there are none? 
Another article at the bottom.
http://www.ncbi.nlm.nih.gov/pubmed/21274969

Abstract

PURPOSE:

To quantitate cerebral blood flow (CBF) in the entire brain using the 3D echo planar imaging (EPI) PULSAR (pulsed star labeling) technique.

MATERIALS AND METHODS:

The PULSAR technique was modified to 1) incorporate a nonselective inversion pulse to suppress background signal; 2) to use 3D EPI acquisition; and 3) to modulate flip angle in such a manner as to minimize the blurring resulting from T1 modulation along the slice encoding direction. Computation of CBF was performed using the general kinetic model (GKM). In a series of healthy volunteers (n = 12), we first investigated the effects of introducing an inversion pulse on the measured value of CBF and on the temporal stability of the perfusion signal. Next we investigated the effect of flip angle modulation on the spatial blurring of the perfusion signal. Finally, we evaluated the repeatability of the CBF measurements, including the influence of the measurement of arterial blood magnetization (a calibration factor for the GKM).

RESULTS:

The sequence provides sufficient perfusion signal to achieve whole brain coverage in ≈ 5 minutes. Introduction of the inversion pulse for background suppression did not significantly affect computed CBF values, but did reduce the fluctuation in the perfusion signal. Flip angle modulation reduced blurring, resulting in higher estimates of gray matter (GM) CBF and lower estimates of white matter (WM) CBF. The repeatability study showed that measurement of arterial blood signal did not result in significantly higher error in the perfusion measurement.

CONCLUSION:

Improvements in acquisition and sequence preparation presented here allow for better quantification and localization of perfusion signal, allowing for accurate whole-brain CBF measurements in 5 minutes.
------------------------------------------------------------------------------------------------------------------

Cerebral blood flow measured with 3D pseudocontinuous arterial spin-labeling MR imaging in Alzheimer disease and mild cognitive impairment: a marker for disease severity

No comments:

Post a Comment