Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Wednesday, March 12, 2014

Targeting neurogenesis ameliorates danger assessment in a mouse model of Alzheimer's disease

Sounds like a job for that great stroke association to follow up this research with stroke patients. No one else will do it.
http://www.sciencedirect.com/science/article/pii/S0166432813007717
Choose an option to locate/access this article:
Check if you have access through your login credentials or your institution
Check access

Highlights

3xTgAD mice show impaired danger assessment and reduced neurogenesis.
Overexpressing Wnt3a in the ventral hippocampus dentate gyrus improves their behavior.
The behavioral improvement is neurogenesis dependent.
Neurogenesis may be a therapeutic target for alleviating behavioral deficits in AD patients.

Abstract

Alzheimer's disease (AD) affects 13% of the population over the age of 65. Behavioral and neuropsychiatric symptoms are frequent and affect 80% of patients. Adult hippocampal neurogenesis, which is impaired in AD, is involved in learning and memory. It remains unclear, however, whether increasing adult neurogenesis improves behavioral symptoms in AD. We report that in the 3xTgAD mouse model of AD, chronic Wnt3a overexpression in the ventral hippocampus dentate gyrus (DG) restored adult neurogenesis to physiological levels. The restoration of adult neurogenesis led to full recovery of danger assessment impairment and the effect was blocked by ablation of neurogenesis with X-irradiation. Finally, using a bed nucleus of stria terminalis (BNST) mRNA expression array, we found that the expression of the 5-HT1A receptor in 3xTgAD mice is selectively decreased and normalized by Wnt3a overexpression in the ventral hippocampus DG, and this normalization is neurogenesis dependent. These findings indicate that reestablishing a functional population of hippocampal newborn neurons in adult AD mice rescues behavioral symptoms, suggesting that adult neurogenesis may be a promising therapeutic target for alleviating behavioral deficits in AD patients.

No comments:

Post a Comment