Because we have NO stroke leadership or strategy this will never be followed up with human clinical trials to see how this could help survivors. You, your children and your grandchildren are screwed.
http://www.alphagalileo.org/ViewItem.aspx?ItemId=160529&CultureCode=en
As brain cells age they lose the fibers that receive neural impulses,
a change that may underlie cognitive decline. Researchers at the
University of California, Irvine recently found a way to reverse this
process in rats. The study was published February 3 in The Journal of Neuroscience.
Researchers caution that more studies are needed, but the findings shed
light on the mechanisms of cognitive decline and identify potential
strategies to stem it.
“There's a tendency to think that aging is an inexorable process,
that it’s something in the genes and there's nothing you can do about
it,” said study co-author Gary Lynch. “This paper is saying that may not
be true.”
The researchers studied dendrites — the branch-like fibers that
extend from neurons and receive signals from other neurons — in rats.
Evidence from other studies in rodents, monkeys, and humans indicates
that dendrites dwindle with age and that this process — called dendritic
retraction — occurs as early as middle age.
The team, led by Lynch, Julie Lauterborn, and Linda Palmer, wanted to
know whether dendritic retraction was already underway in 13-month-old
or “middle-aged” rats and, if it was, could they reverse it by giving
rats a compound called an ampakine. Ampakines had previously been shown
to improve age-related cognitive deficits in rats as well as increase
production of a key growth factor, brain-derived neurotrophic factor
(BDNF) in the brain.
The researchers housed 10-month-old male rats in cages with enriched
environments. Unlike standard cages, these enhanced cages provided ample
space, a large running wheel, and several objects for the rats to
explore. Eleven rats received an oral dose of the ampakine each day for
the next three months while the other 12 rats received a placebo. During
this three-month window the researchers conducted behavioral testing by
monitoring the rats’ activity as they explored an unfamiliar
environment. After three months the researchers examined an area of the
rats’ brains associated with learning and memory, the hippocampus, and
compared that with the hippocampi of two-and-a-half-month-old or
“adolescent” rats.
“Middle-aged” rats given the placebo had shorter dendrites and fewer
dendritic branches than the younger rats. The brains of rats given the
ampakine, however, were mostly indistinguishable from the young rats —
dendrites in both were similar in length and in the amount of branching.
What’s more, the researchers also found that treated rats had
significantly more dendritic spines, the small projections on dendrites
that receive signals from other neurons, than either the untreated rats
or the young rats.
The researchers found that anatomical differences between the rats
also correlated with differences in a biological measure of learning and
memory: the treated rats showed enhanced signaling between neurons — a
phenomenon called long-term potentiation.
Finally, differences between treated rats and untreated rats appeared
in behavioral testing. Typically, rats placed in a new environment
spend a lot of time randomly exploring. As they become more familiar,
they settle into predicable patterns of activity. Rats receiving
ampakine settled into predictable patterns in a foreign play arena by
the second day of testing whereas the placebo group of rats continued
randomly exploring.
“The treated rats had better memory of the arena and developed
strategies to explore,” Lynch said, pointing out that they had in effect
reversed the effects of aging in the brain.
“The importance of optimizing cognitive function across the lifespan
cannot be overstated,” said Carol Barnes, a neuroscientist at the
University of Arizona who studies the effects of aging on the brain and
was not involved in the study. This study “is particularly interesting
because the drug effect was selective in the brain functions and
behaviors that were changed. This is the kind of specificity that could
make translation to the clinic possible,” she added.
However, the researchers caution that much work remains to be done before the drug is tested in people.
“The next step is to repeat the study,” Lynch said, noting there are a
lot of implications associated with this research and they need to
proceed with care. The researchers would also want to explore how many
days of treatment are necessary to see the same results and whether the
drug would also work in older rats and females as well as males.
The Journal of Neuroscience is published by the Society for
Neuroscience, an organization of nearly 40,000 basic scientists and
clinicians who study the brain and nervous system. Study authors Gary
Lynch and Christine Gall can be reached at ga.s.lynch@gmail.com and
cmariegall@gmail.com, respectively. More information on brain aging can
be found on:
http://BrainFacts.org
Use the labels in the right column to find what you want. Or you can go thru them one by one, there are only 28,987 posts. Searching is done in the search box in upper left corner. I blog on anything to do with stroke.DO NOT DO ANYTHING SUGGESTED HERE AS I AM NOT MEDICALLY TRAINED, YOUR DOCTOR IS, LISTEN TO THEM. BUT I BET THEY DON'T KNOW HOW TO GET YOU 100% RECOVERED. I DON'T EITHER, BUT HAVE PLENTY OF QUESTIONS FOR YOUR DOCTOR TO ANSWER.
Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.
What this blog is for:
My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment