Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Tuesday, August 15, 2017

Protein to stop acute cerebral hemorrhage

A crash research project should be immediately initiated in human testing. But that won't occur because we have NO stroke leadership and NO stroke strategy. You're screwed forever along with your children and grandchildren.
https://m.phys.org/news/2017-08-protein-acute-cerebral-hemorrhage.html#jCp
A research team led by Won Bae Jeon at DGIST's Companion Diagnostics and Medical Technology Research Group conducted a joint study with the research team of Professor Jong Eun Lee at Yonsei University's College of Medicine and found a thermally responsive elastin-like polypeptide, a protein that controls acute intracerebral hemorrhage and accelerates nerve regeneration. Thermal-responsive elastin-like polypeptides (ELPs) are cell-attaching proteins that are soluble in water at room temperature, but are transformed to insoluble gel at body temperature.
Brain hemorrhages, including intraventricular hemorrhages, intracerebral hemorrhages and subarachnoid hemorrhages, cause permanent disability, including paralysis and language disorders, or even death. Cerebral accounts for 10 to 15 percent of all strokes, and the mortality rate is 30 to 50 percent within 30 days of onset. However, there are no effective hemostatic methods or therapies to stop bleeding within the first 6 hours of acute intracerebral hemorrhage.
The two research teams artificially induced intracerebral hemorrhage in rats. Then, they injected a thermally responsive elastin-like polypeptide solution and observed that the volume of hematoma was significantly reduced in those rats.
Through biochemical and immunological analysis, the teams determined that thermally responsive elastin-like polypeptides play a role in blocking physically damaged cerebral blood vessels by building a protein nanostructure in the form of a self-assembled gel and simultaneously accelerate vascular restoration by binding to the vascular endothelium. In addition, the team anticipates no toxicity or side effects, as the peptide gel produced in the cerebral hemorrhage region confers a hemostatic effect, and also stimulates brain tissue regeneration, after which the gel is decomposed into amino acids and released into the urine.
Thermo-responsive elastin-like polypeptides can be used for the treatment of intracerebral hemorrhages, including hypertensive cerebral hemorrhages, Willis' arterial ring obstruction (Moyamoya disease) and other cerebral hemorrhages. Moreover, it is expected to be used as a hemostatic agent in the operation of removing cerebral hematomas.
The principal researcher Won Bae Jeon says, "While there is no proper treatment to stop bleeding in the early stage of acute intracerebral hemorrhage, this study suggests the possibility of developing hemostatic therapies using thermo-responsive elastin-like proteins. We will conduct further research to develop biopharmaceuticals for hemostatic therapy for intracerebral hemorrhage and brain tissue regeneration by optimizing the molecular weight and cell binding capacity of polypeptides."
More information: Joohyun Park et al, Thermo-sensitive assembly of the biomaterial REP reduces hematoma volume following collagenase-induced intracerebral hemorrhage in rats, Nanomedicine: Nanotechnology, Biology and Medicine (2017). DOI: 10.1016/j.nano.2017.04.001
Provided by: DGIST (Daegu Gyeongbuk Institute of Science and Technology)

No comments:

Post a Comment