Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Tuesday, August 15, 2017

The Next Step in Understanding Impaired Reactive Balance Control in People With Stroke: The Role of Defective Early Automatic Postural Responses

Once again describing a problem with no identified solution. 
http://journals.sagepub.com/doi/abs/10.1177/1545968317718267
First Published July 8, 2017 Research Article


Background and objective. Postural muscle responses are often impaired after stroke. We aimed to identify the contribution of deficits in very early postural responses to poorer reactive balance capacity, with a particular focus on reactive stepping as a key strategy for avoiding falls.  
Methods. A total of 34 chronic stroke survivors and 17 controls were subjected to translational balance perturbations in 4 directions. We identified the highest perturbation intensity that could be recovered without stepping (single stepping threshold [SST]) and with maximally 1 step (multiple stepping threshold [MST]). We determined onset latencies and response amplitudes of 7 leg muscles bilaterally and identified associations with balance capacity.  
Results. People with stroke had a lower MST than controls in all directions. Side steps resulted in a higher lateral MST than crossover steps but were less common toward the paretic side. Postural responses were delayed and smaller in amplitude on the paretic side only. We observed the strongest associations between gluteus medius (GLUT) onset and amplitude and MST toward the paretic side (R2 = 0.33). Electromyographic variables were rather weakly associated with forward and backward MSTs (R2 = 0.10-0.22) and with SSTs (R2 = 0.08-0.15).  
Conclusions. Delayed and reduced paretic postural responses are associated with impaired reactive stepping after stroke. Particularly, fast and vigorous activity of the GLUT is imperative for overcoming large sideways perturbations, presumably because it facilitates the effective use of side steps. Because people with stroke often fall toward the paretic side, this finding indicates an important target for training.

38 references and I bet your doctor has not read a single one. 

No comments:

Post a Comment