Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Saturday, May 30, 2020

Recent Trends in Lower-Limb Robotic Rehabilitation Orthosis: Control Scheme and Strategy for Pneumatic Muscle Actuated Gait Trainers

Is 6 years enough time and recent enough for your stroke hospital to know about and implement this? You want to make sure  you aren't pushing the envelope on their ability to actually keep up-to-date on stroke research. No pressure on them, please.

Recent Trends in Lower-Limb Robotic Rehabilitation Orthosis: Control Scheme and Strategy for Pneumatic Muscle Actuated Gait Trainers

Mohd Azuwan Mat Dzahir 1,2,* and Shin-ichiroh Yamamoto 1  1 Shibaura Institute of Technology, Department of Bio-Science Engineering, 307 Fukasaku,  Minuma-ku, Saitama City, Saitama 337-8570, Japan; E-Mail: yamashin@se.shibaura-it.ac.jp 2 Universiti Teknologi Malaysia, Faculty of Mechanical Engineering, UTM Skudai,  Johor Bahru 81310, Malaysia
* Author to whom correspondence should be addressed; E-Mail: nb11503@shibaura-it.ac.jp or azuwan@fkm.utm.my; Tel.: +80-80-4094-8009.
Received: 10 January 2014; in revised form: 17 March 2014 / Accepted: 21 March 2014 /  Published: 14 April 2014

Abstract: 

It is a general assumption that pneumatic muscle-type actuators will play an important role in the development of an assistive rehabilitation robotics system. In the last decade, the development of a pneumatic muscle actuated lower-limb leg orthosis has been rather slow compared to other types of actuated leg orthoses that use AC motors, DC motors, pneumatic cylinders, linear actuators, series elastic actuators (SEA) and brushless servomotors. However, recent years have shown that the interest in this field has grown exponentially, mainly due to the demand for a more compliant and interactive  human-robotics system. This paper presents a survey of existing lower-limb leg orthoses for rehabilitation, which implement pneumatic muscle-type actuators, such as McKibben artificial muscles, rubbertuators, air muscles, pneumatic artificial muscles (PAM) or pneumatic muscle actuators (PMA). It reviews all the currently existing lower-limb rehabilitation orthosis systems in terms of comparison and evaluation of the design, as well as the control scheme and strategy, with the aim of clarifying the current and on-going research in the lower-limb robotic rehabilitation field.

No comments:

Post a Comment