Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Saturday, August 17, 2013

Two types of exercise-induced neuroplasticity in congenital hemiparesis: a transcranial magnetic stimulation, functional MRI, and magnetoencephalography study

You doctor can explain what the hell this means and don't let them off the hook until you understand it. You do expect your doctor to know this stuff, don't you? Otherwise why the hell are you seeing them?
http://onlinelibrary.wiley.com/doi/10.1111/dmcn.12209/abstract;jsessionid=3A43DF4626AA73D8191D1D05B94943E0.d02t01?deniedAccessCustomisedMessage=&userIsAuthenticated=false

Aim

Early unilateral brain lesions can lead to a persistence of ipsilateral corticospinal projections from the contralesional hemisphere, which can enable the contralesional hemisphere to exert motor control over the paretic hand. In contrast to the primary motor representation (M1), the primary somatosensory representation (S1) of the paretic hand always remains in the lesioned hemisphere. Here, we report on differences in exercise-induced neuroplasticity between individuals with such ipsilateral motor projections (ipsi) and individuals with early unilateral lesions but ‘healthy’ contralateral motor projections (contra).

Method

Sixteen children and young adults with congenital hemiparesis participated in the study (contralateral [Contra] group: n=7, four females, three males; age range 10–30y, median age 16y; ipsilateral [Ipsi] group: n=9, four females, five males; age range 11–31y, median age 12y; Manual Ability Classification System levels I to II in all individuals in both groups). The participants underwent a 12-day intervention of constraint-induced movement therapy (CIMT), consisting of individual training (2h/d) and group training (8h/d). Before and after CIMT, hand function was tested using the Wolf Motor Function Test (WMFT) and diverging neuroplastic effects were observed by transcranial magnetic stimulation (TMS), functional magnetic resonance imaging (fMRI), and magnetoencephalography (MEG). Statistical analysis of TMS data was performed using the non-parametric Wilcoxon signed-rank test for pair-wise comparison; for fMRI standard statistical parametric and non-parametric mapping (SPM5, SnPM3) procedures (first level/second level) were carried out. Statistical analyses of MEG data involved analyses of variance (ANOVA) and t-tests.

Results

While MEG demonstrated a significant increase in S1 activation in both groups (p=0.012), TMS showed a decrease in M1 excitability in the Ipsi group (p=0.036), but an increase in M1 excitability in the Contra group (p=0.043). Similarly, fMRI showed a decrease in M1 activation in the Ipsi group, but an increase in activation in the M1–S1 region in the Contra group (for both groups p<0.001 [SnPM3] within the search volume).

Interpretation

Different patterns of sensorimotor (re)organization in individuals with early unilateral lesions show, on a cortical level, different patterns of exercise-induced neuroplasticity. The findings help to improve the understanding of the general principles of sensorimotor learning and will help to develop more specific therapies for different pathologies in congenital hemiparesis.

No comments:

Post a Comment