Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Thursday, April 2, 2015

University of Pennsylvania's TitanArm exoskeleton

I want one.
University of Pennsylvania's TitanArm exoskeleton

Eyes-on: University of Pennsylvania's TitanArm exoskeleton (video)
TitanArm already took home silver in a competition for senior projects at the University of Pennsylvania, and now the team behind it is visiting Orlando to compete in the Intel-sponsored Cornell Cup for embedded design. We stopped by the showroom and snagged a few minutes with the crew to take a look at their creation: an 18-pound, untethered, self-powered exoskeleton arm constructed for less than $2,000.
To wield the contraption, users attach the cable-driven mechanical appendage to themselves with straps from a military-grade hiking backpack, and guide it with a thumbstick on a nunchuck-like controller. If a load needs to be held in place, the wearer can jab a button on the hand-held control to apply a brake. A Beagle Bone drives the logic for the setup, and it can stream data such as range of motion wirelessly to a computer. As for battery-life, they group says the upper-body suit has previously squeezed out over 24 hours of use without having to recharge.

No comments:

Post a Comment