Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Thursday, December 3, 2015

Nanofibrous scaffolds supporting optimal central nervous system regeneration: an evidence-based review

Your rehab doctor should be contacting these researchers immediately in order to create a stroke protocol for this. If not, fire them.
https://www.dovepress.com/articles.php?article_id=24827
Authors Kamudzandu M, Roach P, Fricker RA, Yang Y
Received 26 July 2015
Accepted for publication 9 October 2015
Published 2 December 2015 Volume 2015:3 Pages 123—131
DOI http://dx.doi.org/10.2147/JN.S70337
Checked for plagiarism Yes
Review by Single-blind
Peer reviewers approved by Dr Saberi Hooshang
Peer reviewer comments 3
Editor who approved publication: Dr Hongyun Huang
Munyaradzi Kamudzandu, Paul Roach, Rosemary A Fricker, Ying Yang

Institute for Science and Technology in Medicine, School of Medicine, Keele University, Stoke-on-Trent, UK

Abstract: Restoration of function following damage to the central nervous system (CNS) is severely restricted by several factors. These include the hindrance of axonal regeneration imposed by glial scars resulting from inflammatory response to damage, and limited axonal outgrowth toward target tissue. Strategies for promoting CNS functional regeneration include the use of nanotechnology. Due to their structural similarity, synthetic nanofibers could play an important role in regeneration of CNS neural tissue toward restoration of function following injury. Two-dimensional nanofibrous scaffolds have been used to provide contact guidance for developing brain and spinal cord neurites, particularly from neurons cultured in vitro. Three-dimensional nanofibrous scaffolds have been used, both in vitro and in vivo, for creating cell adhesion permissive milieu, in addition to contact guidance or structural bridges for axons, to control reconnection in brain and spinal cord injury models. It is postulated that nanofibrous scaffolds made from biodegradable and biocompatible materials can become powerful structural bridges for both guiding the outgrowth of neurites and rebuilding glial circuitry over the “lesion gaps” resulting from injury in the CNS.

Download Article [PDF] 

No comments:

Post a Comment