Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Saturday, August 19, 2017

Lasers used to detect risk of heart attack and stroke

There was nothing in my profile or any risk calculator that even remotely suggested I was at risk for a stroke at age 50.   The only hint would have been that my Dad had 80% blockage in one of his carotid arteries.
http://www.alphagalileo.org/ViewItem.aspx?ItemId=178232&CultureCode=en
18 August 2017 Warwick, University of
Patients at risk of heart attacks and strokes may be spotted earlier thanks to a diagnosis tool that uses near-infrared light to identify high-risk arterial plaques, according to research carried out at WMG, University of Warwick, the Baker Institute and Monash University.
The scientists observed that when they increased the wavelength of the light currently used to visualise the fatty build-up found in arteries (atherosclerotic plaques) they could selectively identify the rupture-prone deposits, which commonly lead to blood clots, heart attacks and strokes.
While some fatty deposits or plaques can remain stable for years, other high-risk cases develop complications, such as bleeding into the plaque, which leads to the formation of cracks and rupture of the fatty plaque. This can result in blockages in the blood vessels causing a heart attack or stroke. Current imaging techniques are able to identify some characteristics of high-risk plaques but none are generally accepted as reliable methods for selectively detecting the dangerous plaques.
“What we have done uses innovative, materials-based techniques to assist in the development of new diagnostic tools,” explains Dr Tara Schiller, WMG, University of Warwick.
“This could help us to detect the threat of an imminent heart attack and result in a decrease of the mortality rates,” Dr Schiller continues.
Dr Tara Schiller from the International Institute for Nanocomposites Manufacturing at WMG, along with colleagues from the Baker and Monash University, have discovered that increasing the wavelength of the infra-red (IR) radiation currently used to detect fatty deposit build-up in arteries to near-infrared (NIR) wavelengths allowed them to selectively identify plaques with internal bleeding, typically associated with high-risk deposits.
The products causing this fluorescence were identified using Raman spectroscopy. They are thought to be a mixture of heme products, formed during the degradation of red blood cells. These products were only observed in the unstable plaques with internal bleeding and not observed in the more stable fatty deposits. This can improve selectivity when looking for high-risk deposits in patients and could help doctors to identify the most at-risk patients.
“Despite the millions of dollars spent each year particularly on heart imaging, there still isn't a reliable way of identifying these unstable plaques,” explains Dr Karlheinz Peter.
“We realised when we shine a light in the near-infrared wavelength range, that this light is reflected at a certain wavelength. So in a way we can use laser light to shine up the plaques that are unstable, and it's very characteristic,” Dr Peter continues.
After further investigation with clinical trials this method of imaging technique could be used to assess unstable fatty arterial plaques and could be used to monitor the effectiveness of the drugs used to prevent heart attacks or strokes.
The research ‘Near-infrared autofluorescence induced by intraplaque hemorrhage and heme degradation as marker for high-risk atherosclerotic plaques’ is published in Nature Communications.
http://www2.warwick.ac.uk/newsandevents/pressreleases/lasers_used_to/

Attached files

  • Dr Tara Schiller

No comments:

Post a Comment