Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Tuesday, March 20, 2018

Metabolomic response to coffee consumption: application to a three-stage clinical trial

I'm sure your doctor can contact someone to decipher exactly what this says and get it written into a stroke protocol. I want to know exactly how much coffee to drink per bodyweight and sex. Is that too much to ask for?
https://www.ncbi.nlm.nih.gov/pubmed/29381822

Abstract

BACKGROUND:

Coffee is widely consumed and contains many bioactive compounds, any of which may impact pathways related to disease development.

OBJECTIVE:

To identify individual metabolite changes in response to coffee.

METHODS:

We profiled the metabolome of fasting serum samples collected from a previously reported single-blinded, three-stage clinical trial. Forty-seven habitual coffee consumers refrained from drinking coffee for 1 month, consumed four cups of coffee/day in the second month and eight cups/day in the third month. Samples collected after each coffee stage were subject to nontargeted metabolomic profiling using UPLC-ESI-MS/MS. A total of 733 metabolites were included for univariate and multivariate analyses.

RESULTS:

A total of 115 metabolites were significantly associated with coffee intake (P < 0.05 and Q < 0.05). Eighty-two were of known identity and mapped to one of 33 predefined biological pathways. We observed a significant enrichment of metabolite members of five pathways (P < 0.05): (i) xanthine metabolism: includes caffeine metabolites, (ii) benzoate metabolism: reflects polyphenol metabolite products of gut microbiota metabolism, (iii) steroid: novel but may reflect phytosterol content of coffee, (iv) fatty acid metabolism (acylcholine): novel link to coffee and (v) endocannabinoid: novel link to coffee.

CONCLUSIONS:

The novel metabolites and candidate pathways we have identified may provide new insight into the mechanisms by which coffee may be exerting its health effects.

KEYWORDS:

biomarkers; caffeine; coffee; metabolomics; trial
PMID:
29381822
DOI:
10.1111/joim.12737

No comments:

Post a Comment