Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Sunday, November 10, 2019

Researchers successfully reverse Alzheimer's disease in mouse model

Did your doctor followup on this with researchers to get this tested in humans? If not, incompetence reigns in your stroke hospital, beginning at the top with the stroke president and board of directors. Have them all fired.  Only 20 months old.

Researchers successfully reverse Alzheimer's disease in mouse model

The brain of a 10-month-old mouse with Alzheimer's disease (left) is full of amyloid plaques (red) surrounded by activated microglial cells (green). But these hallmarks of Alzheimer's disease are reversed in animals that have gradually lost the BACE1 enzyme (right). Credit: Hu et al., 2018
A team of researchers from the Cleveland Clinic Lerner Research Institute have found that gradually depleting an enzyme called BACE1 completely reverses the formation of amyloid plaques in the brains of mice with Alzheimer's disease, thereby improving the animals' cognitive function. The study, which will be published February 14 in the Journal of Experimental Medicine, raises hopes that drugs targeting this enzyme will be able to successfully treat Alzheimer's disease in humans.
One of the earliest events in Alzheimer's disease is an abnormal buildup of beta- peptide, which can form large, in the brain and disrupt the function of . Also known as beta-secretase, BACE1 helps produce beta-amyloid peptide by cleaving (APP). Drugs that inhibit BACE1 are therefore being developed as potential Alzheimer's disease treatments but, because BACE1 controls many important processes by cleaving proteins other than APP, these drugs could have serious side effects.
Mice completely lacking BACE1 suffer severe neurodevelopmental defects. To investigate whether inhibiting BACE1 in adults might be less harmful, Riqiang Yan and colleagues generated mice that gradually lose this enzyme as they grow older. These mice developed normally and appeared to remain perfectly healthy over time.
The researchers then bred these rodents with mice that start to develop amyloid plaques and Alzheimer's disease when they are 75 days old. The resulting offspring also formed plaques at this age, even though their BACE1 levels were approximately 50% lower than normal. Remarkably, however, the plaques began to disappear as the mice continued to age and lose BACE1 activity, until, at 10 months old, the mice had no plaques in their brains at all.
"To our knowledge, this is the first observation of such a dramatic reversal of amyloid deposition in any study of Alzheimer's disease mouse models," says Yan, who will be moving to become chair of the department of neuroscience at the University of Connecticut this spring.
Decreasing BACE1 activity also resulted in lower beta-amyloid peptide levels and reversed other hallmarks of Alzheimer's disease, such as the activation of microglial cells and the formation of abnormal neuronal processes.
Loss of BACE1 also improved the learning and memory of with Alzheimer's disease. However, when the researchers made electrophysiological recordings of neurons from these animals, they found that depletion of BACE1 only partially restored synaptic function, suggesting that BACE1 may be required for optimal synaptic activity and cognition.
"Our study provides genetic evidence that preformed can be completely reversed after sequential and increased deletion of BACE1 in the adult," says Yan. "Our data show that BACE1 inhibitors have the potential to treat Alzheimer's disease patients without unwanted toxicity. Future studies should develop strategies to minimize the synaptic impairments arising from significant inhibition of BACE1 to achieve maximal and optimal benefits for Alzheimer's patients."

Explore further
PET tracer gauges effectiveness of promising Alzheimer's treatment

More information: Hu et al., 2018. J. Exp. Med. DOI: 10.1084/jem.20171831
Journal information: Journal of Experimental Medicine


No comments:

Post a Comment