Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Sunday, December 27, 2020

Secreted Peptides for Diagnostic Trajectory Assessments in Brain Injury Rehabilitation


Useless because it is using the current failures to recover as the status quo. CHANGE THAT TO 100% RECOVERY and survivors will gladly accept those predictions.

Secreted Peptides for Diagnostic Trajectory Assessments in Brain Injury Rehabilitation

First Published December 17, 2020 Research Article Find in PubMed 

Rehabilitation following traumatic brain injury (TBI) significantly improves outcomes; yet TBI heterogeneity raises the need for molecular evidence of brain recovery processes to better track patient progress, evaluate therapeutic efficacy, and provide prognostication.

Here, we assessed whether the trajectory of TBI-responsive peptides secreted into urine can produce a predictive model of functional recovery during TBI rehabilitation.

The multivariate urinary peptidome of 12 individuals with TBI was examined using quantitative peptidomics. Measures were assessed upon admission and discharge from inpatient rehabilitation. A combination of Pavlidis template matching and partial least-squares discriminant analysis was used to build models on Disability Rating Scale (DRS) and Functional Independence Measure (FIM) scores, with participants bifurcated into more or less functional improvement groups.

The produced models exhibited high sensitivity and specificity with the area under the receiver operator curve being 0.99 for DRS- and 0.95 for FIM-based models using the top 20 discriminant peptides. Predictive ability for each model was assessed using robust leave-one-out cross-validation with Q2 statistics of 0.64 (P = .00012) and 0.62 (P = .011) for DRS- and FIM-based models, respectively, both with a high predictive accuracy of 0.875. Identified peptides that discriminated improved functional recovery reflected heightened neuroplasticity and synaptic refinement and diminished cell death and neuroinflammation, consistent with postacute TBI pathobiology.

Produced models of urine-based peptide measures reflective of ongoing recovery pathobiology can inform on rehabilitation progress after TBI, warranting further study to assess refined stratification across a larger population and efficacy in assessing therapeutic interventions.

Access Options
 

No comments:

Post a Comment