Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Saturday, December 12, 2020

Quantitative Morphology of Cerebral Thrombi Related to Intravital Contraction and Clinical Features of Ischemic Stroke

 Explain how this is of ANY FUCKING USE for getting 100% recovered. Your mentors and senior researchers should know exactly why they approved this and the expected outcome in survivor recovery. Do they not know and follow the only goal in stroke?  100% recovery.

Quantitative Morphology of Cerebral Thrombi Related to Intravital Contraction and Clinical Features of Ischemic Stroke

 
Originally publishedhttps://doi.org/10.1161/STROKEAHA.120.031559Stroke. 2020;51:3640–3650

Background and Purpose:

The purpose was to assess quantitatively and qualitatively the composition and structure of cerebral thrombi and correlate them with the signs of intravital clot contraction (retraction), as well as with etiology, severity, duration, and outcomes of acute ischemic stroke.

Methods:

We quantified high-resolution scanning electron micrographs of 41 cerebral thrombi for their detailed cellular and noncellular composition and analyzed histological images for the overall structure with the emphasis on red blood cell compression, fibrin age, and the signs of inflammation.

Results:

Cerebral thrombi were quite compact and had extremely low porosity. The prevailing cell type was polyhedral compressed erythrocytes (polyhedrocytes) in the core, and fibrin-platelet aggregates were concentrated at the periphery; both findings are indicative of intravital contraction of the thrombi. The content of polyhedrocytes directly correlated with the stroke severity. The prevalence of fibrin bundles was typical for more severe cases, while the content of fibrin sponge prevailed in cases with a more favorable course. The overall platelet content in cerebral thrombi was surprisingly small, while the higher content of platelet aggregates was a marker of stroke severity. Fibrillar types of fibrin prevailed in atherothrombogenic thrombi. Older fibrin prevailed in thrombi from the patients who received thrombolytics, and younger fibrin dominated in cardioembolic thrombi. Alternating layers of erythrocytes and fibrin mixed with platelets were common for thrombi from the patients with more favorable outcomes. Thrombi with a higher number of leukocytes were associated with fatal cases.

Conclusions:

Most cerebral thrombi undergo intravital clot contraction (retraction) that may be of underestimated clinical importance. Despite the high variability of the composition and structure of cerebral thrombi, the content of certain types of blood cells and fibrin structures combined with the morphological signs of intravital contraction correlate with the clinical course and outcomes of acute ischemic stroke.

No comments:

Post a Comment