Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Sunday, December 13, 2020

Assessment of Neuroplasticity Using EEG Signal in Rehabilitation of Brain Stem Stroke Patients

 We don't need you to 'assess' neuroplasticity. WE NEED YOU TO CREATE PROTOCOLS THAT WILL CREATE NEUROPLASTICITY ON DEMAND. Useless.

Assessment of Neuroplasticity Using EEG Signal in Rehabilitation of Brain Stem Stroke Patients


Abstract:
Robot-assisted motor training provides an efficient alternative to conventional rehabilitation methods used for poststroke patients. The re-learning of lost motor functions happens through neuroplasticity in the brain. Electroencephalogram (EEG) provides an effective method for assessing neuroplasticity. Movement-related cortical potential (MRCP), an EEG-derived time-domain pattern, indicates changes due to motor skills gained as a result of the training. This study aims to perform a two-stage robot-assisted rehabilitation program on brain stem stroke patients consisting of a total of 24 training sessions and to assess whether significant motor recovery and neuroplasticity induction are achieved after the first stage or after completing both stages of the designed rehabilitation program. Three brain stem stroke patients were recruited for hand motor training on AMADEO rehabilitation robot for 8 weeks consisting of two stages of 4 weeks each. Three assessments methods which include standard clinical tests, hand strength and range of movement measurements using AMADEO assessment tool, as well as EEG signal acquisition, were performed at the beginning of all the training sessions (week 0), after completion of the first stage of rehabilitation (week 4) and after completion of both stages of the training sessions (week 8). The experimental results demonstrate that all brain stem stroke patients show significant functional hand motor recovery, as indicated by clinical tests, hand strength, and range of movement measurements, after completing 8 weeks of the training. Moreover, MRCP signal negative peak showed a significant decrease in its amplitude when the patients completed two phases of rehabilitation training, indicating neuroplasticity induction.
 

No comments:

Post a Comment