Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Saturday, January 7, 2023

Rehabilitation Robotics and Machine Learning for Stroke Severity Classification

I'm finding graduate level theses are better than most researchers, probably because the professors involved are more up-to-date on existing research

Rehabilitation Robotics and Machine Learning for Stroke Severity Classification

Date of Award

Fall 12-16-2022

Degree Type

Thesis

Degree Name

Master of Science (MS)

Department

Mathematics and Statistics

First Advisor

Igor Belykh

Abstract

Stroke therapy is essential to reduce impairments and improve motor movements by engaging autogenous neuroplasticity. This study uses supervised learning methods to address an autonomous classification via stroke severity labeled data by a clinician. Thirty-three patients with chronic stroke performed a variety of rehabilitation activities while utilizing the Motus Nova rehabilitation technology to capture upper and lower body motion. Based on the minimum, maximum, and mean of the range of motion and pressure as well as the number of movements, force flexion, and extension for each game and session provided from the sensor data. Supervised learning methods were applied to a harmonized dataset of roughly 32,000 patient sessions based on the maximum score per session per game. With this approach using light gradient boosting methods we achieved an average of 94% accuracy with 10-fold cross-validation to prevent overfitting. This thesis shows objectively-measured rehabilitation training, enabling the identification of the stroke severity class with the hopes to have patients have a less severe class in the future.

Over the last 10 years robotic rehabilitation has been utilized in inpatient therapy. Robotic rehabilitation has been shown to be effective in improving the severity of stroke in some cases. In particular, robotic devices can be used to help stroke survivors regain movement, improve their functional abilities and improve depression (11). These devices can provide a high level of precision and repeatability, allowing patients to perform therapeutic exercises with greater accuracy and consistency (1). Additionally, because robotic devices can be programmed to provide different levels of assistance, they can be tailored to the individual needs of each patient. This allows for a more personalized and effective rehabilitation in-home program (21).



No comments:

Post a Comment