Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Wednesday, August 20, 2025

Protection of Stroke-induced Blood-Brain Barrier Disruption by Guanxinning Injection and Its Active-component Combination via TLR4/NF-κB/MMP9-mediated Neuroinflammation

 Is this solving this problem? 

Inflammatory action leaking through the blood brain barrier.

Have your competent? doctor answer that and when human testing will start. Doesn't know and won't figure out human testing; THEN YOU HAVE AN INCOMPETENT DOCTOR! Fire them!


Protection of Stroke-induced Blood-Brain Barrier Disruption by Guanxinning Injection and Its Active-component Combination via TLR4/NF-κB/MMP9-mediated Neuroinflammation


https://doi.org/10.1016/j.phymed.2025.157162Get rights and content

Highlights

  • A cell-based 3D blood-brain barrier (BBB) organoids successfully resemble ischemic damage's structural and functional characteristics.
  • The TLR4/NF-κB/MMP9 axis critically safeguards BBB integrity by modulating neuroinflammatory signaling.
  • SAB and SI combination in GXNI synergizes BBB protection by targeting MMP9 protein.

Abstract

Background

: The blood-brain barrier (BBB) is essential for central nervous system (CNS) homeostasis, yet neuroinflammatory mechanisms driving BBB disruption remain poorly understood.

Purpose

: To explore the oxygen-glucose deprivation/reoxygenation (OGD/R)-induced BBB dysfunction and evaluate the therapeutic effects of Guanxinning injection (GXNI), a Danshen-Chuanxiong herbal compound, targeting neuroinflammatory pathways.

Methods

: A 3D-BBB organoid composed of human brain microvascular endothelial cells, human astrocytes, and primary human brain microvascular pericytes was constructed, and conditions for OGD/R that simulate ischemic stroke were established. Structure and function of the in vitro BBB were evaluated by morphology, paracellular permeability, and tight junction proteins ZO-1, claudin-5, and occludin expression. In vivo, infarct volume and BBB leakage were measured in a mid-cerebral artery occlusion-induced cerebral ischemia-reperfusion injury model. RNA-seq and network pharmacology analysis were used to identify key genes and pathways for ischemic BBB disruption. HPLC-MS was performed to identify and quantify active components. Molecular docking, SPR, and molecular dynamics were performed to predict and confirm the interaction of active compounds and target proteins.

Results

: A Danshen-Chuanxiong double herbal medicine, GXNI, mitigated these effects, restoring transport capacity, reducing oxidative stress (ROS), and enhancing basement membrane components (laminin, collagen IV). In vivo, GXNI alleviated cerebral ischemia-reperfusion injury (CIRI), decreasing BBB leakage, infarct volume, and neurological deficits. The pivotal role of TLR4/NF-κB/MMP9 neuroinflammatory axis for GXNI BBB protection was identified through transcriptomic analysis and validated via immunofluorescence in BBB spheroids. Molecular docking revealed Danshen-derived salvianolic acid B (SAB) as a high-affinity MMP9 binder, confirmed by quantitative binding assays. The SAB and Chuanxiong-derived senkyunolide I (SI) combination achieved more prominent upregulation of tight junction proteins and suppression of MMP9.

Conclusion

: Our findings further confirm neuroinflammation as a central driver of ischemic BBB damage and demonstrate that GXNI preserves BBB integrity by targeting TLR4/NF-κB/MMP9 signaling in 3D models and CIRI mice, with SAB-SI synergistically contributing to enhanced therapeutic efficacy.

No comments:

Post a Comment