Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Monday, November 21, 2011

Team develops new method for producing precursor of neurons, bone, other important tissues from stem cells

There has to be some stroke researcher out there that understands all this and could write it up in a paper for us.
http://medicalxpress.com/news/2011-11-team-method-precursor-neurons-bone.html

In a paper published this week in the journal , however, scientists at the University of Georgia describe a method that—in a single step—directs undifferentiated, or pluripotent, to become neural , which are the precursors of bone cells, smooth muscle cells and neurons.

"Now that we have methods for efficiently making neural crest stem cells, we can start to use them to better understand human diseases," said lead author Stephen Dalton, Georgia Research Alliance Eminent Scholar of Molecular Biology and professor of cellular biology in the UGA Franklin College of Arts and Sciences. "The cells can be also used in drug discovery and potentially in cell therapy, which involves the transplantation of cells."

The process by which a pluripotent stem cell, which has the ability to become any type of cell in the body, becomes a specific cell type is orchestrated by signaling molecules that activate specific "decision" pathways within cells. As a stem cell divides, various combinations of these molecules at different points during its development narrow its possible outcomes so that it ultimately becomes one type of cell, a skin cell, for example, instead of, say, a muscle cell.

Until now, creating neural crest cells relied on a mix of science and serendipity. Scientists would take undifferentiated stem cells and direct them to become a related but different cell type known as neural progenitor cells. The neural crest cells they really wanted would often show up as contaminants, which scientists would then isolate and use for their studies. Not surprisingly, the process was laborious, time consuming, expensive and sub-optimal for clinical applications.

The method developed by Dalton and a post-doctoral researcher in his laboratory, Laura Menendez, involves bathing cells in a solution of small molecules that suppress one pathway, known as Smad, and amplify another, known as Wnt. The inhibition of Smad is used in the process that creates the related neural progenitor cells, which suggested that the pathway could also play a role in the development of neural crest cells. Observing that the Wnt pathway is highly active in the formation of the neural crest in developing organisms led Dalton and his team to suspect that activating the pathway could give them the cells they needed. After testing various concentrations of the signaling molecules and determining the optimal time to deliver them, the scientists discovered that they could create neural crest cells with little or no contamination of other .

No comments:

Post a Comment