Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Thursday, November 17, 2011

Embolus extravasation is an alternative mechanism for cerebral microvascular recanalization

This one is weird, it seems to say that small blood clots in capillaries can be enveloped and pushed out thru the walls. So is this better than the earlier post here on pericytes?
Who is going to test against each other? Time is Brain you know.
http://oc1dean.blogspot.com/2011/09/restoring-capillary-blood-flow-after.html
the new one here:
pictures here from frontiersin.org

http://www.ncbi.nlm.nih.gov/pubmed/20505729

Abstract

Cerebral microvascular occlusion is a common phenomenon throughout life that might require greater recognition as a mechanism of brain pathology. Failure to recanalize microvessels promptly may lead to the disruption of brain circuits and significant functional deficits. Haemodynamic forces and the fibrinolytic system are considered to be the principal mechanisms responsible for recanalization of occluded cerebral capillaries and terminal arterioles. Here we identify a previously unrecognized cellular mechanism that may also be critical for this recanalization. By using high-resolution fixed-tissue microscopy and two-photon imaging in living mice we observed that a large fraction of microemboli infused through the internal carotid artery failed to be lysed or washed out within 48 h. Instead, emboli were found to translocate outside the vessel lumen within 2-7 days, leading to complete re-establishment of blood flow and sparing of the vessel. Recanalization occurred by a previously unknown mechanism of microvascular plasticity involving the rapid envelopment of emboli by endothelial membrane projections that subsequently form a new vessel wall. This was followed by the formation of an endothelial opening through which emboli translocated into the perivascular parenchyma. The rate of embolus extravasation was significantly decreased by pharmacological inhibition of matrix metalloproteinase 2/9 activity. In aged mice, extravasation was markedly delayed, resulting in persistent tissue hypoxia, synaptic damage and cell death. Alterations in the efficiency of the protective mechanism that we have identified may have important implications in microvascular pathology, stroke recovery and age-related cognitive decline.

No comments:

Post a Comment