http://stroke.ahajournals.org/content/41/10/2171.short
Abstract
Background and Purpose—A blood-based biomarker of acute ischemic stroke would be of significant value in clinical practice. This study aimed to (1) replicate in a larger cohort our previous study using gene expression profiling to predict ischemic stroke; and (2) refine prediction of ischemic stroke by including control groups relevant to ischemic stroke.
Methods—Patients with ischemic stroke (n=70, 199 samples) were compared with control subjects who were healthy (n=38), had vascular risk factors (n=52), and who had myocardial infarction (n=17). Whole blood was drawn ≤3 hours, 5 hours, and 24 hours after stroke onset and from control subjects. RNA was processed on whole genome microarrays. Genes differentially expressed in ischemic stroke were identified and analyzed for predictive ability to discriminate stroke from control subjects.
Results—The 29 probe sets previously reported predicted a new set of ischemic strokes with 93.5% sensitivity and 89.5% specificity. Sixty- and 46-probe sets differentiated control groups from 3-hour and 24-hour ischemic stroke samples, respectively. A 97-probe set correctly classified 86% of ischemic strokes (3 hour+24 hour), 84% of healthy subjects, 96% of vascular risk factor subjects, and 75% with myocardial infarction.
Conclusions—This study replicated our previously reported gene expression profile in a larger cohort and identified additional genes that discriminate ischemic stroke from relevant control groups. This multigene approach shows potential for a point-of-care test in acute ischemic stroke.
No comments:
Post a Comment