Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Wednesday, November 27, 2013

Targeting Perciytes for Angiogenic Therapies

Since pericytes clamp down on small capillaries in the immediate aftermath of a stroke and don't release. Your doctor should be able to use the knowledge gained here to fix one of the neuronal cascade of death problems.
http://onlinelibrary.wiley.com/doi/10.1111/micc.12107/abstract

Abstract

In pathological scenarios, such as tumor growth and diabetic retinopathy, blocking angiogenesis would be beneficial. In others, such as myocardial infarction and hypertension, promoting angiogenesis might be desirable. Due to their putative influence on endothelial cells, vascular pericytes have become a topic of growing interest and are increasingly being evaluated as a potential target for angioregulatory therapies. For example, the strategy of manipulating pericyte recruitment to capillaries could result in anti- or pro-angiogenic effects. However, our current understanding of pericytes is limited by knowledge gaps regarding pericyte identity and lineage. To use a music analogy, this review is a “mash-up” that attempts to integrate what we know about pericyte functionality and expression with what is beginning to be elucidated regarding their regenerative potential. We explore the lingering questions regarding pericyte phenotypic identity and lineage. The expression of different pericyte markers (e.g., SMA, Desmin, NG2 and PDGFR-β) varies for different subpopulations and tissues. Previous use of these markers to identify pericytes has suggested potential phenotypic overlaps and plasticity toward other cell phenotypes. Our review chronicles the state of the literature, identifies critical unanswered questions, and motivates future research aimed at understanding this intriguing cell type and harnessing its therapeutic potential.

No comments:

Post a Comment