https://www.mdlinx.com/internal-medicine/top-medical-news/article/2016/10/26/6
Northwestern Medicine News
New MRI technique detects blood flow velocity to identify who is most at risk for stroke.
Markl, who is a professor of biomedical engineering in the McCormick School of Engineering and of radiology in the Feinberg School of Medicine, has developed a new imaging technique that can help predict who is most at risk for stroke. This breakthrough could lead to better treatment and outcomes for patients with atrial fibrillation.
The research was described online in the journal Circulation: Cardiovascular Imaging.
Atrial fibrillation is linked to stroke because it slows the patient’s blood flow. The slow, sluggish blood flow can lead to blood clots, which can then travel to the brain and initiate stroke. Markl’s cardiac magnetic resonance (CMR) imaging test can detect the blood’s velocity through the heart and body. Called “atrial 4D flow CMR,” the technique is non–invasive and does not require contrast agents. The imaging program, which images blood flow dynamically and in the three spatial dimensions, comes in the form of software that can also be integrated into current MRI equipment without the need of special hardware and scanners or equipment upgrades.
“We simply programmed the scanner to generate information differently — in a way that wasn’t previously available,” Markl said. “It allows you to measure flow, diffusion of molecules, and tissue elasticity. You can interrogate the human body in a very detailed manner.”
Markl’s 4D flow imaging technique can give a more precise assessment of who needs the medication, preventing physicians from over treating their patients. In a pilot study with 60 patients and a control group, Markl found that atrial fibrillation patients who would have been considered high risk for stroke by the traditional scoring system in fact had normal blood flow, while patients who were considered lower risk sometimes had the slow blood flow indicative of potential clotting.
Markl, who is a professor of biomedical engineering in the McCormick School of Engineering and of radiology in the Feinberg School of Medicine, has developed a new imaging technique that can help predict who is most at risk for stroke. This breakthrough could lead to better treatment and outcomes for patients with atrial fibrillation.
The research was described online in the journal Circulation: Cardiovascular Imaging.
Atrial fibrillation is linked to stroke because it slows the patient’s blood flow. The slow, sluggish blood flow can lead to blood clots, which can then travel to the brain and initiate stroke. Markl’s cardiac magnetic resonance (CMR) imaging test can detect the blood’s velocity through the heart and body. Called “atrial 4D flow CMR,” the technique is non–invasive and does not require contrast agents. The imaging program, which images blood flow dynamically and in the three spatial dimensions, comes in the form of software that can also be integrated into current MRI equipment without the need of special hardware and scanners or equipment upgrades.
“We simply programmed the scanner to generate information differently — in a way that wasn’t previously available,” Markl said. “It allows you to measure flow, diffusion of molecules, and tissue elasticity. You can interrogate the human body in a very detailed manner.”
Markl’s 4D flow imaging technique can give a more precise assessment of who needs the medication, preventing physicians from over treating their patients. In a pilot study with 60 patients and a control group, Markl found that atrial fibrillation patients who would have been considered high risk for stroke by the traditional scoring system in fact had normal blood flow, while patients who were considered lower risk sometimes had the slow blood flow indicative of potential clotting.
No comments:
Post a Comment