Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Friday, October 21, 2016

NSF grant supports new approach to gait training for stroke survivors

There are lots of walking assist devices out there, I have described dozens. Your doctor should know of them and be testing them for the best ones to be implemented in their hospital. But I can guarantee that is not occurring. Your stroke  hospital is a fucking failure, they aren't doing one damn thing about new research and applying it to help survivors.
http://www.udel.edu/udaily/2016/october/gait-training-stroke-survivors/
Thirty percent of stroke survivors, including some 300,000 Americans every year, are left with compromised walking ability. As our population ages, these numbers will undoubtedly grow, increasing the already high demand for technology to support gait training.
“For most stroke survivors who are left with mobility impairments, recovering the ability to walk is at or near the top of their wish list for rehabilitation,” says Darcy Reisman, associate professor of physical therapy at the University of Delaware. “It’s also critical to their being able to live at home again after a stroke.”
Wearable robots, which use electrically actuated motors to control joint motion, are ideal candidates to automate gait training. However, while great advances have been made in sensing, actuation, and computation, the potential of wearable robots in gait neuro-rehabilitation has not yet been fully realized.
Fabrizio Sergi, assistant professor of biomedical engineering at UD, says there are challenges in designing assistive forces for wearable robots that are capable of teaching stable and energetically efficient walking patterns while also accommodating variability from one individual to another.
To address these challenges, Sergi is partnering with Reisman and Jill Higginson, associate professor of mechanical and biomedical engineering at UD. The team was recently awarded a three-year grant from the National Science Foundation’s National Robotics Initiative to develop an approach called GOALL (Goal-Oriented, subject Adaptive, robot-assisted Locomotor Learning).
GOALL combines biomechanical modeling with experiments using a lower-extremity exoskeleton to determine the robotic assistance forces needed to induce changes in gait parameters like step length and walking speed.
“We are currently pursuing a new approach to robotic gait training based on pulses of assistive forces,” says Sergi. “In this project, we will determine when to apply pulses, how large those pulses should be, and to which joints they should be applied.”
Higginson adds, “The robot will have the unique ability to adapt to a patient’s needs as his or her walking improves, just as a therapist would do.”
The interdisciplinary project combines Sergi’s expertise in robotic systems design and control with Higginson’s knowledge on the use of computational models to relate muscle impairments to gait deviations, as well as Reisman’s clinical perspective on post-stroke rehabilitation. The research methods used and the results obtained from the project will benefit both the robotics and biomechanics communities.

No comments:

Post a Comment