Deans' stroke musings

Changing stroke rehab and research worldwide now.Time is Brain!Just think of all the trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 493 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It's quite disgusting that this information is not available from every stroke association and doctors group.
My back ground story is here:http://oc1dean.blogspot.com/2010/11/my-background-story_8.html

Friday, October 14, 2016

Trial operation of a cloud service-based three-dimensional virtual reality tele-rehabilitation system for stroke patients

We won't even need hospitals for stroke rehab anymore. Just stabilize the patient and push them out the door.
http://ieeexplore.ieee.org/abstract/document/7581595/?reload=true
5
Author(s)
Norio Kato ; Toshiaki Tanaka ; Shunichi Sugihara ; Koichi Shimizu ; Nobuki Kudo

Abstract:
We developed a tele-rehabilitation system to improve community rehabilitation for patients who are discharged early from hospital. The developed tele-rehabilitation system consists of devices designed to reduce the physical and economic burden on users while promoting optimum user movement. A Backend-as-a-Service cloud computing service was used for the communication between terminals. A non-contact sensor, Kinect, was used to measure movement. In addition, we used a three-dimensional (3D) display to present 3D images using binocular parallax, to encourage smooth movement of patients. We used this system for stroke patients and found improvements in task-performance time, smoothness of movements, and range of motion in all patients. No major issues occurred during the tele-rehabilitation. These results demonstrated the high operability and efficacy of our cloud service-based 3D virtual reality tele-rehabilitation system.
Date of Conference: 23-25 Aug. 2016
Date Added to IEEE Xplore: 06 October 2016
ISBN Information:
Publisher: IEEE
This article is only available in PDF.

No comments:

Post a Comment