Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Sunday, June 9, 2019

Research sheds new light on how brain stem cells are activated

It is YOUR RESPONSIBILITY to get your doctor and stroke hospital involved with initiating research into human subjects on this. Assuming you want stem cells activated in your brain post stroke. If not, then you can let your stroke hospital be irresponsible since they don't have enough initiative to lift a finger.  Yes, this is in fruit flies, so we need human research.

Research sheds new light on how brain stem cells are activated



Summary: A new study in fruit fly models reveals STRIPAK components act as a switch to turn off quiescence and turn on the reactivation of neural stem cells.
Source: University of Plymouth
Our brains are notoriously bad at regenerating cells that have been lost through injury or disease. While therapies using neural stem cells (NSCs) hold the promise of replacing lost cells, scientists need to better understand how NSCs behave in the brain in order to develop effective treatments.
Now research led by the University of Plymouth helps to shed new light on the mechanisms used by NSCs to ‘wake up’ – going from their usual dormant state to one of action.
NSCs produce neurons (nerve cells) and surrounding glial cells in the brain. By understanding how NSCs work, it could pave the way for therapies to speed up the neurons’ and glial cells’ regeneration.
The new study, conducted using Drosophila fruit flies, shows that molecules that form a complex called STRIPAK are essential to promote reactivation in NSCs. STRIPAK (Striatin-interacting phosphatase and kinase) is found in organisms from fungi to humans, and the team uncovered it when comparing the genetic messages of dormant and reactivated NSCs in live fly brains.
The researchers then discovered that STRIPAK components act as a switch to turn off dormancy (or quiescence) and turn on reactivation.
Lead author Dr Claudia Barros, from the Institute of Translational and Stratified Medicine at the University of Plymouth, acknowledges there is still a long way to go until such findings can be translated into human treatments. But she explains the significance of the new work:
“So little is currently known about how neural stem cells coordinate cues to become active and direct the production of more brain cells,” she said. “These stem cells last throughout life mainly in a dormant state, so learning how they work is critical to our understanding of cell regeneration.
This shows neural stem cells
A confocal microscope image showing small/ quiescent and enlarged/ reactivating Neural Stem Cells expressing membrane-tagged GFP (green) and the cell cycle marker Cyclin B (red) in the young Drosophila larval brain. The image is credited to Dr. Claudia Barros, University of Plymouth.
“This study reveals that STRIPAK molecules are essential to enable reactivation in NSCs, and we are very pleased with the outcomes. But we are only at the beginning. We are working to expand our findings and bring us closer to the day when human neural stem cells can be controlled and efficiently used to facilitate brain damage repair, or even prevent brain cancer growth that is fuelled by stem-like cells.”
Funding: The work was supported by the University of Plymouth, Faculty of Medicine and Dentistry; the Leverhulme Trust; the Biotechnology and Biological Sciences Research Council (BBSRC) the DFG German Research Foundation and the Johannes Gutenberg University, Germany.
The work of Dr Barros and her team takes place within the Brain Tumour Research Centre of Excellence at the University of Plymouth.
About this neuroscience research article
Source:
University of Plymouth
Media Contacts:
Amy King – University of Plymouth
Image Source:
The image is credited to Dr. Claudia Barros, University of Plymouth.
Original Research: Open access
“STRIPAK Members Orchestrate Hippo and Insulin Receptor Signaling to Promote Neural Stem Cell Reactivation”. Jon Gil-Ranedo, Eleanor Gonzaga, Karolina J. Jaworek, Christian Berger, Torsten Bossing, Claudia S. Barros.
Cell Reports. doi:10.1016/j.celrep.2019.05.02


No comments:

Post a Comment