Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Tuesday, August 27, 2019

Impaired Motor Function in the Affected Arm Predicts Impaired Postural Balance After Stroke: A Cross Sectional Study

And why would any stroke survivor care about a prediction?  What stroke protocol are you suggesting to cure the affected arm? THAT is the only thing survivors want to know. Have you never talked to survivors? 

Impaired Motor Function in the Affected Arm Predicts Impaired Postural Balance After Stroke: A Cross Sectional Study

Lena Rafsten1,2*, Christiane Meirelles3, Anna Danielsson1,4 and Katharina S. Sunnerhagen1,2
  • 1Department of Clinical Neuroscience and Rehabilitation Medicine, Institute of Neuroscience and Physiology, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden
  • 2Centre for Person-Centred Care (GPCC), University of Gothenburg, Gothenburg, Sweden
  • 3Department of Therapy Service, University of Chicago Medical Center, Chicago, IL, United States
  • 4Department of Health and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden
Background: Impaired postural balance is a common symptom after stroke and a common cause of falling. Most common daily tasks use arm and hand movements. Impairment in an upper extremity is a common stroke symptom, affecting 50–80% in the acute phase after stroke, and 40–50% in the sub-acute phase. The impact of leg function on postural balance has been investigated in several studies, but few have stressed the importance of arm function on postural balance.
Objective: To explore whether there is any association between arm function and postural balance after stroke.
Method: A cross sectional study where 121 adults (mean age: 70 ± 12.3 years, 72 men) from two different data sources, Gothenburg Very Early Supported Discharge (GOTVED), and a study by Carvalho et al. were merged. Time for assessments ranged from 1 to 13 years when the patients were in the chronic phase. The dependent variables were Berg Balance scale (BBS) and Time Up and Go (TUG) both dichotomized to “impaired postural balance” and “not impaired postural balance.” As independent variables, the Fugl-Meyer Assessment-Upper Extremity (FMA-UE) scale was used. The FMA-UE was presented with the total score.
Results: The motor function in the arm affected after stroke onset correlated with postural balance both measured with the BBS (0.321, p < 0.001) and the TUG (−0.315, p = 0.001). Having impaired motor function in the arm was significantly associated with impaired postural balance assessed with the BBS with OR = 0.879 (CI 0.826–0.934, p < 0.001). Regression analysis with the TUG showed the same result, OR = 0.868 (CI 0.813–0.927, p < 0.001) for FM-UE.
Conclusion: The motor function of the affected arm was significantly associated with impaired postural balance post stroke, as assessed by BBS or TUG. It could be of clinical importance to be aware of the fact that not only lower extremity impairment, but also arm function can have an impact on postural balance in a late stage after stroke.
Trial Registration: VGFOUGSB-669501.

No comments:

Post a Comment