Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Wednesday, February 20, 2013

Functional Brain Changes Following Cognitive and Motor Skills Training

Finally they are thinking what I've been thinking about for years. You need a diagnosis of your dead and damaged areas in order to evaluate treatment outcomes. Wow, objective rather than subjective methods.
http://nnr.sagepub.com/content/27/3/187.abstract?etoc

Abstract

Background. Functional neuroimaging is increasingly used in rehabilitation research to map the neural mechanisms subserving training targets. These data can inform intervention design and improve evaluation of treatment outcomes. Reliable neural markers may provide standard metrics of treatment impact and allow consideration of behavioral outcomes in the context of functional brain changes. Objective. To identify common patterns of functional brain changes associated with training across a diverse range of intervention protocols. Reliable brain changes could inform development of candidate neural markers to guide intervention research. Methods. Taking a quantitative meta-analytic approach, we review the functional neuroimaging studies of cognitive and motor skills training interventions in healthy young adults (N = 38). Results. Reliable decreases in functional brain activity from pretraining to posttraining were observed in brain regions commonly associated with cognitive control processes, including lateral prefrontal, left anterior inferior parietal lobule, and dorsal anterior cingulate cortex. Training-related increases were observed in the medial prefrontal cortex and posterior cingulate and angular gyrus, core regions of the default network. Activity within the subcortical striatum also showed reliable increases pretraining to posttraining. Conclusions. These data suggest that altered engagement of large-scale, spatially distributed cortical brain networks and subcortical striatal brain regions may serve as candidate neural markers of training interventions. The development of reliable metrics based on activity and functional connectivity among large-scale brain networks may prove fruitful in identifying interactions between domain-general and -specific changes in brain activity that affect behavioral outcomes.

No comments:

Post a Comment