Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Monday, February 11, 2013

Loss of Dickkopf-1 Restores Neurogenesis in Old Age and Counteracts Cognitive Decline

Your doctor should be able to take this and create a stroke protocol for you.
http://www.cell.com/cell-stem-cell/retrieve/pii/S1934590912006443

Summary

Memory impairment has been associated with age-related decline in adult hippocampal neurogenesis. Although Notch, bone morphogenetic protein, and Wnt signaling pathways are known to regulate multiple aspects of adult neural stem cell function, the molecular basis of declining neurogenesis in the aging hippocampus remains unknown. Here, we show that expression of the Wnt antagonist Dickkopf-1 (Dkk1) increases with age and that its loss enhances neurogenesis in the hippocampus. Neural progenitors with inducible loss of Dkk1 increase their Wnt activity, which leads to enhanced self-renewal and increased generation of immature neurons. This Wnt-expanded progeny subsequently matures into glutamatergic granule neurons with increased dendritic complexity. As a result, mice deficient in Dkk1 exhibit enhanced spatial working memory and memory consolidation and also show improvements in affective behavior. Taken together, our findings show that upregulating Wnt signaling by reducing Dkk1 expression can counteract age-related decrease in neurogenesis and its associated cognitive decline.

No comments:

Post a Comment