Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Monday, February 18, 2013

Role of NMDA receptors in adult neurogenesis: an ontogenetic (re)view on activity-dependent development

Your neurologist will be able to summarize all these v207 posts on neurogenesis and be able to tell you exactly how to use them to recover. I know, fantasyland, but if you don't demand an answer now we won't have that answer in  30 years when your children will need it.
http://www.ncbi.nlm.nih.gov/pubmed/23397131

Abstract

It is now widely accepted that neurogenesis continues throughout life. Accumulating evidence suggests that neurotransmitters are essential signaling molecules that control the different steps of neurogenesis. Nevertheless, we are only beginning to understand the precise role of neurotransmitter receptors and in particular excitatory glutamatergic transmission in the differentiation of adult-born neurons. Recent technical advances allow single-cell gene deletion to study cell-autonomous effects during the maturation of adult-born neurons. Single-cell gene deletion overcomes some of the difficulties in interpreting global gene deletion effects on entire brain areas or systemic pharmacological approaches that might result in compensatory circuit effects. The aim of this review is to summarize recent advances in the understanding of the role of NMDA receptors (NMDARs) during the differentiation of adult-born neurons and put them in perspective with previous findings on cortical development.

No comments:

Post a Comment